
Structure-based Instance Generation

Yuri Malitsky2,3, Marius Merschformann1, Barry O’Sullivan2,
Kevin Tierney1

1 kevin.tierney@upb.de – Assistant Professor
Decision Support & Operations Research

Department of Business Information Systems
University of Paderborn

2 University College Cork, Ireland
3 IBM Research, USA

September 29, 2014 – COSEAL Workshop 2014

Outline

Outline

1. Motivation

2. Structures in SAT/Max-SAT Problems

3. The structure-based instance generation approach

4. Application to SAT/Max-SAT

5. Computational results

6. Conclusion

Structure-based Instance Generation 2/21

Motivation

Motivation

Problem:

1. Training portfolios/configuring algorithms is di�cult on small
datasets.

2. Industrial datasets tend to be very small

3. Thus, often not enough data exists to build models/tune on
specific industrial problems

In OR, this is a particular problem: many problems only have
a limited number of real-world instances available (between 5
and 50 instances)

Solution: Generate new instances based on the instances we
already have!

Structure-based Instance Generation 3/21

Motivation

Motivation

Problem:

1. Training portfolios/configuring algorithms is di�cult on small
datasets.

2. Industrial datasets tend to be very small

3. Thus, often not enough data exists to build models/tune on
specific industrial problems

In OR, this is a particular problem: many problems only have
a limited number of real-world instances available (between 5
and 50 instances)

Solution: Generate new instances based on the instances we
already have!

Structure-based Instance Generation 3/21

Motivation

Motivation

Problem:

1. Training portfolios/configuring algorithms is di�cult on small
datasets.

2. Industrial datasets tend to be very small

3. Thus, often not enough data exists to build models/tune on
specific industrial problems

In OR, this is a particular problem: many problems only have
a limited number of real-world instances available (between 5
and 50 instances)

Solution: Generate new instances based on the instances we
already have!

Structure-based Instance Generation 3/21

Motivation

Motivation

Problem:

1. Training portfolios/configuring algorithms is di�cult on small
datasets.

2. Industrial datasets tend to be very small

3. Thus, often not enough data exists to build models/tune on
specific industrial problems

In OR, this is a particular problem: many problems only have
a limited number of real-world instances available (between 5
and 50 instances)

Solution: Generate new instances based on the instances we
already have!

Structure-based Instance Generation 3/21

Motivation

Motivation

Problem:

1. Training portfolios/configuring algorithms is di�cult on small
datasets.

2. Industrial datasets tend to be very small

3. Thus, often not enough data exists to build models/tune on
specific industrial problems

In OR, this is a particular problem: many problems only have
a limited number of real-world instances available (between 5
and 50 instances)

Solution: Generate new instances based on the instances we
already have!

Structure-based Instance Generation 3/21

Motivation

Motivation

Problem:

1. Training portfolios/configuring algorithms is di�cult on small
datasets.

2. Industrial datasets tend to be very small

3. Thus, often not enough data exists to build models/tune on
specific industrial problems

In OR, this is a particular problem: many problems only have
a limited number of real-world instances available (between 5
and 50 instances)

Solution: Generate new instances based on the instances we
already have!

Structure-based Instance Generation 3/21

Motivation

Novelty of this work

The first instance generation paradigm that. . .

I Analyzes the structure of existing instances based on their
features and transports structures between instances

I Uses instance features as a criteria for accepting/rejecting an
instance

I Shows that instances generated are e↵ective within a selection
approach

Structure-based Instance Generation 4/21

Structures in SAT/Max-SAT Problems

Variable graph visualizations

aes 32 3 keyfind 1 AProVE07-03 eq.atree.braun.8.unsat

Structure-based Instance Generation 5/21

Structures in SAT/Max-SAT Problems

The “SAT Flower”: counting-harder-php-reshu✏ed-07

Structure-based Instance Generation 6/21

The Structure-based Instance Generation Approach

The Structure-based Instance

Generation Approach

Structure-based Instance Generation 7/21

The Structure-based Instance Generation Approach

Instance generation example

Receiver Giver

Structure-based Instance Generation 8/21

The Structure-based Instance Generation Approach

Instance generation example

Receiver (1 Destroy) Giver

Structure-based Instance Generation 8/21

The Structure-based Instance Generation Approach

Instance generation example

Receiver (1 Destroy) Giver (Identify structure)

Structure-based Instance Generation 8/21

The Structure-based Instance Generation Approach

Instance generation example

Receiver (Repair with structure) Giver (Identify structure)

Structure-based Instance Generation 8/21

The Structure-based Instance Generation Approach

Instance generation algorithm

Structure-based Instance Generation 9/21

The Structure-based Instance Generation Approach

Reliance on instance features
Structure detection

I Structures should be connected to the instance features

I e.g. in SAT: “modules” of variables (variable graph
connectivity)

Instance acception
I Ensure the distance of the new instance is not “too far” away

from the pool of instances it was created from.

Structure-based Instance Generation 10/21

The Structure-based Instance Generation Approach

Reliance on instance features
Structure detection

I Structures should be connected to the instance features
I e.g. in SAT: “modules” of variables (variable graph

connectivity)

Instance acception
I Ensure the distance of the new instance is not “too far” away

from the pool of instances it was created from.

Structure-based Instance Generation 10/21

The Structure-based Instance Generation Approach

Reliance on instance features
Structure detection

I Structures should be connected to the instance features
I e.g. in SAT: “modules” of variables (variable graph

connectivity)
Instance acception

I Ensure the distance of the new instance is not “too far” away
from the pool of instances it was created from.

Structure-based Instance Generation 10/21

The Structure-based Instance Generation Approach

Related work

Numerous SAT/Max-SAT Instance generators:

I Too many to list them all; most generate instances based on
probability distributions fine tuned to try to make the
instances more industrial-like.

Main related work:
Morphing (Gent, Hoos, Prosser, Walsh. AAAI 1999):

I Goal is to “connect” the structures of two instances; it is a
much more invasive process

I Through our destroy/repair process, we modify the underlying
instance di↵erently

Structure-based Instance Generation 11/21

Application to SAT/Max-SAT

Why SAT/Max-SAT

I Simple instance structure for testing the generation technique

I Dearth of real-world data, especially for Max-SAT

I Well-known and studied instance features

Structure-based Instance Generation 12/21

Application to SAT/Max-SAT

Why SAT/Max-SAT

I Simple instance structure for testing the generation technique

I Dearth of real-world data, especially for Max-SAT

I Well-known and studied instance features

Structure-based Instance Generation 12/21

Application to SAT/Max-SAT

Why SAT/Max-SAT

I Simple instance structure for testing the generation technique

I Dearth of real-world data, especially for Max-SAT

I Well-known and studied instance features

Structure-based Instance Generation 12/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Variable based heuristic

I Identifies variables in sub-components of the instance

I Uses the average number of clauses each variable is in and
selects a variable with a number of clauses near this value

Average clauses/variable: 2.8;

Structure-based Instance Generation 13/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Variable based heuristic

I Identifies variables in sub-components of the instance

I Uses the average number of clauses each variable is in and
selects a variable with a number of clauses near this value

Average clauses/variable: 2.8; Identified sub-components

Structure-based Instance Generation 13/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Clause based heuristic

I Identifies clauses in sub-components of the instance
I Uses the average number of variables shared by each clause

and selects a clause with a number of variables near this value
and returns it and its neighbors

Average variable/clause: 3.4;

Structure-based Instance Generation 14/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Clause based heuristic

I Identifies clauses in sub-components of the instance
I Uses the average number of variables shared by each clause

and selects a clause with a number of variables near this value
and returns it and its neighbors

Average variable/clause: 3.4; Identified sub-components

Structure-based Instance Generation 14/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Clause based heuristic

I Identifies clauses in sub-components of the instance
I Uses the average number of variables shared by each clause

and selects a clause with a number of variables near this value
and returns it and its neighbors

Average variable/clause: 3.4; Identified sub-components

Structure-based Instance Generation 14/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Destroy

I Destroying is simple:
1. Remove all of the selected clauses
2. Perform bookkeeping

Structure-based Instance Generation 15/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Repair

Goal: Map variables in sub-component to variables in the instance

I Compute three features for each variable in the receiver and
new component:
1. # clauses / # instance clauses
2. # variable positive clauses / # total variable clauses
3. Average # variables for each clause the variable is in

Then, map variables in VG to variables with similar features, or
with small probability, make it a new variable.

Structure-based Instance Generation 16/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Repair

Goal: Map variables in sub-component to variables in the instance
I Compute three features for each variable in the receiver and

new component:
1. # clauses / # instance clauses
2. # variable positive clauses / # total variable clauses
3. Average # variables for each clause the variable is in

Then, map variables in VG to variables with similar features, or
with small probability, make it a new variable.

Structure-based Instance Generation 16/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Repair

Goal: Map variables in sub-component to variables in the instance
I Compute three features for each variable in the receiver and

new component:
1. # clauses / # instance clauses
2. # variable positive clauses / # total variable clauses
3. Average # variables for each clause the variable is in

Then, map variables in VG to variables with similar features, or
with small probability, make it a new variable.

Structure-based Instance Generation 16/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Repair

Goal: Map variables in sub-component to variables in the instance
I Compute three features for each variable in the receiver and

new component:
1. # clauses / # instance clauses
2. # variable positive clauses / # total variable clauses
3. Average # variables for each clause the variable is in

Then, map variables in VG to variables with similar features, or
with small probability, make it a new variable.

Structure-based Instance Generation 16/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Repair

Goal: Map variables in sub-component to variables in the instance
I Compute three features for each variable in the receiver and

new component:
1. # clauses / # instance clauses
2. # variable positive clauses / # total variable clauses
3. Average # variables for each clause the variable is in

Then, map variables in VG to variables with similar features, or
with small probability, make it a new variable.

Structure-based Instance Generation 16/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Acceptance criterion

Max-SAT & SAT

I Compute instance features and check if the distance to the
cluster center is within 3 standard deviations of the mean for
each feature

SAT

I Potential problem with SAT: Small changes to the instance
can make it trivial to solve

I Solution: Run a SAT solver for 30 seconds; if the instance is
solved, reject it.

Structure-based Instance Generation 17/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Acceptance criterion

Max-SAT & SAT

I Compute instance features and check if the distance to the
cluster center is within 3 standard deviations of the mean for
each feature

SAT

I Potential problem with SAT: Small changes to the instance
can make it trivial to solve

I Solution: Run a SAT solver for 30 seconds; if the instance is
solved, reject it.

Structure-based Instance Generation 17/21

Application to SAT/Max-SAT

Application to SAT/Max-SAT
Acceptance criterion

Max-SAT & SAT

I Compute instance features and check if the distance to the
cluster center is within 3 standard deviations of the mean for
each feature

SAT

I Potential problem with SAT: Small changes to the instance
can make it trivial to solve

I Solution: Run a SAT solver for 30 seconds; if the instance is
solved, reject it.

Structure-based Instance Generation 17/21

Computational Results

Computational results
Max-SAT

We generated Max-SAT instances using the industrial instances in
the Max-SAT 2013 competition.

Above: Average runtime (s) for an industrial solver and random
solver on clusters of generated instances from the industrial and
random instances, respectively.

Structure-based Instance Generation 18/21

Computational Results

Computational results
Max-SAT (2)

Original Generated
Model Avg. (s) # Unsolved Avg. (s) # Unsolved
Best Single 735 2 735 2
Random Forest 988 5 599 2
SVM (radial) 734 2 591 1
VBS 184 0 184 0
Several selection techniques training a portfolio of industrial

Max-SAT solvers (10-fold cross validation).

Structure-based Instance Generation 19/21

Computational Results

Computational results
SAT

Average PAR10 Solved
Best Single 453 3,872 157
Random (300) 541 5,107 144
Crafted (300) 386 4,090 154
Industrial (46) 348 3,426 161
Generated (300) 502 3,463 162
Generated (1,500) 437 3,049 166
VBS 364 364 195

Structure-based Instance Generation 20/21

Conclusion

Conclusion and future work

I We generate industrial-like instances from a pool of existing
instances

I Currently, this is possible for the SAT and Max-SAT problems

I We intend to expand this work to mixed-integer programming
and possibly other problems

Structure-based Instance Generation 21/21

	Outline
	Motivation
	Structures in SAT/Max-SAT Problems
	The Structure-based Instance Generation Approach
	Application to SAT/Max-SAT
	Computational Results
	Conclusion

