Automatic Design of Multi-Objective Local Search Algorithms
Case Study on a bi-objective Permutation Flowshop Scheduling Problem

Aymeric Blot¹ Marie-Éléonore Kessaci¹ Laetitia Jourdan¹
Holger H. Hoos²

¹Université de Lille, Inria, CNRS, UMR 9189 CRIStAL, France
²Universiteit Leiden, The Netherlands & University of British Columbia, Canada

COSEAL – September, 2017
Motivation

Goal
- Use MO-AAC to design multi-objective metaheuristics

Case Study
- ParamILS & MO-ParamILS
- Multi-objective Local Search algorithms
- Bi-objective Permutation Flowshop Scheduling Problem
Context

Automatic Algorithm Configuration (AAC)

Single-Objective AAC

- **Single** performance indicator

 - irace [López-Ibáñez *et al.*, 2016]
 - ParamILS [Hutter *et al.*, 2009]
 - SMAC [Hutter *et al.*, 2010]
 - GGA++ [Ansótegui *et al.*, 2015], . . .

Multi-Objective AAC

- **Multiple** performance indicators

 - MO-ParamILS [Blot *et al.*, 2016]
 - SPRINT-Race [Zhang *et al.*, 2015]
Context
Multi-Objective algorithms

Performance Indicators

- Convergence (HV)
- Distribution (Δ)
- Diversity
- Size

![Pareto optimal set of solutions](image)

Blot et al. Automatic Design of Multi-Objective Local Search Algorithms
Our Approach

Small-Scale Analysis

Blot, Jourdan, Kessaci-Marmion
Automatic Design of Multi-objective Local Search Algorithms
GECCO’17, Berlin (Germany), July 2017

Large-Scale Analysis

Blot, Pernet, Jourdan, Kessaci-Marmion and Hoos
Automatically Configuring Multi-objective Local Search using Multi-objective Optimisation
EMO’17, LNCS 10173: 61–73, Springer, Münster (Germany), March 2017
MO-ParamILS

Roots

ParamILS

Hutter, Hoos, Leyton-Brown, Stützle
ParamILS: An Automatic Algorithm Configuration Framework
Journal of Artificial Intelligence Research (36), 2009

MO-ParamILS

Blot, Hoos, Jourdan, Kessaci-Marmion and Trautmann
MO-ParamILS: A Multi-objective Automatic Algorithm Configuration Framework
LION’16, LNCS 10079: 32–47, Springer, Ischia Island (Napoli, Italy), May 2016
MO-ParamILS

- Extension of ParamILS for multiple performance indicators
- Iterated MOLS on the configuration space
- Outputs a Pareto set of configurations

![Diagram of MO-ParamILS process]

- Configuration space
- Instance set
- Performance
- Instance, configuration
- Configurator
- Target algorithm
- Return best configurations
MO-ParamILS

Machine learning process

Experimental protocol

- **Training (multiple times)**
 - Training instances
 - Randomised seed and instance order

- **Validation**
 - Training instances
 - Every final training configuration

- **Test**
 - Testing instances
 - Every *non-dominated* validated configuration
MO-ParamILS

Training

Problem space

\(f_2 \)

\(\rightarrow \ f_1 \)

(execution on single instance)

- For every configuration
 - multiple runs
 - multiple instances
- Average \(HV \) and \(\Delta \) over multiple runs
Problem space

Δ

(average over training instances)

Configuration space

Estimation for a single configuration

Δ

(average over training instances)

MO-ParamILS

Training

Problem space

Δ

(average over training instances)

Configuration space

Estimation for a single configuration

Δ

(average over training instances)
MO-ParamILS

Training

- iteratively investigates configurations
- refining quality estimations
- returns non-dominated
- shuffles training instances

Configuration space

Δ

$1-HV$

(average over training instances)
MO-ParamILS

Training

- iteratively investigates configurations
- refining quality estimations
- returns non-dominated
- shuffles training instances

Configuration space

\[\Delta \]

\(1 - HV \)

(average over training instances)
MO-ParamILS

Training

- iteratively investigates configurations
- refining quality estimations
- returns non-dominated
- shuffles training instances

Configuration space

Δ

$1-HV$

(average over training instances)
MO-ParamILS
Validation, test

\[\Delta \]

Training

\[1 - HV \]

(average over training instances)

- **Training**
 - multiple training runs
 - different instance subsets
 - incomparable quality estimation

- **Validation**
 - all training configurations
 - all training instances
MO-ParamILS

Validation, test

Validation

△

(average over training instances)

$1 - HV$

- **Training**
 - multiple training runs
 - different instance subsets
 - incomparable quality estimation

- **Validation**
 - all training configurations
 - all training instances
MO-ParamILS

Validation, test

Validation

\[\Delta \]

\(1 - HV \) (average over training instances)

Test

\[\Delta \]

\(1 - HV \) (average over test instances)
Case Study
Multi-objective Local Search Algorithms (MOLS)

Key Points

▶ Efficient metaheuristics
▶ Used on many problems (e.g., scheduling, routing, assignment)
▶ Many strategies and parameters

Instantiations

▶ Methods
 ▶ Pareto Archived Evolution Strategy (PAES, 1999, 2000)
▶ Unifications
 ▶ Stochastic Pareto Local Search (SPLS, 2012)
 ▶ Dominance-based Multi-objective Local Search (DMLS, 2012)
Case Study
Permutation Flowshop Scheduling Problem (PFSP)

Bi-objective PFSP

▶ 2 objectives
 ▶ Makespan (max completion time)
 ▶ Flowtime (sum completion time)
▶ Classical Taillard instances (20-100 jobs; 5-20 machines)
Does MO-AAC actually find the best configurations?

Exhaustive Analysis
- Every possible configuration
- On the test set

MO-ParamILS
- Training (30 times)
- Validation
- Test

Target Algorithm
- MOLS (189 configurations)
 - 4 categorical parameters
 - 3 integer parameters
Exhaustive Analysis
+

PFSP Taillard instances – 50 jobs

PFSP Taillard instances – 100 jobs
Exhaustive Analysis

Exploration strategy: $\Delta o +$; Selection strategy: △ □ ■ ■

PFSP Taillard instances – 50 jobs

PFSP Taillard instances – 100 jobs
Exhaustive Analysis

Pareto optimal solutions

PFSP Taillard instances – 50 jobs

EXHAUSTIVE (189)
OPTIMAL (10)

PFSP Taillard instances – 100 jobs

EXHAUSTIVE (189)
OPTIMAL (7)
MO-ParamILS
Using exhaustive test analysis

PFSP Taillard instances – 50 jobs

PFSP Taillard instances – 100 jobs
Interpretations

Exhaustive Analysis

- Big differences wrt benchmark
- Parameter consistency

MO-ParamILS

- No loss of hypervolume
- Really close to the optimal configurations
Large-Scale Analysis

Should we use AAC or MO-AAC?

Compare 3 AAC Training Approaches

- MO-ParamILS ($HV \parallel \Delta$)
- SO-ParamILS (HV)
- SO-ParamILS ($HV + \Delta$) ($0.75HV + 0.25\Delta$)

Target Algorithm

- MOLS (2790 configurations)
 - 4 categorical parameters
 - 4 integer parameters
Test Performance

PFSP Taillard instances – 50 jobs

\(\Delta \text{ Spread} \)

\(1 - HV \)

\(+\) HV

\(\triangle\) HV + \(\Delta\)

\(\circ\) HV \(\|\Delta\)

Blot et al. Automatic Design of Multi-Objective Local Search Algorithms
Interpretations

SO-ParamILS (HV)
- Disregards diversity entirely

SO-ParamILS ($HV+\Delta$)
- Only in the aggregation direction
- Requires costly indicator normalisation

MO-ParamILS ($HV \parallel \Delta$)
- Wide, diverse covering
Wrap up

Perspectives

- Investigate other problems (e.g., MO-TSP, MO-QAP)
- Extends to other algorithms (e.g., EA)

Take-home Message

- Configuring a MO algorithm is a MO problem
- MO-ParamILS can design efficient MO metaheuristics
- Use multi-objective AAC!
 - No loss of performance
 - Way better diversity