Theory of Online Parameter Selection

[Some Thoughts, Many Questions]

Carola Doerr
CNRS and Pierre et Marie Curie University, Paris, France

COSEAL Workshop
Brussels, September 11, 2017
Performance measure: number of function evaluations ("black-box queries"/"oracle calls") needed (on average) to find solutions of certain quality
Online Parameter Selection

- Assume: fix problem, fix algorithm (typically parametrized)
- Question: which parameter setting?
 - can have decisive impact on performance
 - hard to answer because of complex interactions between the parameters
- 1st answer: Tuning!
- 2nd (better?) answer: Online Parameter Selection ("Parameter Control")
 - Hope: performance gains through automated adjustment of parameter setting
 - to the problem instance
 - to the state of the optimization process
 - Problem: \textit{how} to select parameters online?

Is there room to discuss this question at COSEAL?
Online Parameter Selection

- Assume: fix problem, fix algorithm (←typically parametrized)
- Question: which parameter setting?
 → can have decisive impact on performance
 → hard to answer because of complex interactions between the parameters
- 1st answer: Tuning!
- 2nd (better?) answer: Online Parameter Selection ("Parameter Control")
 → Hope: performance gains through automated adjustment of parameter setting
 ▪ to the problem instance
 ▪ to the state of the optimization process
 → Problem: how to select parameters online?
 → Has become a “hot topic” in randomized black-box optimization (but apparently also in ML)
 → My interest: theoretical foundations for online parameter selection (in discrete search spaces)
Theoretical Approach – Why?

- **Selfish (?) motivation:**
 - Mathematical curiosity 😊
 - Fun 😊

- **Hope for long-lasting impact:**
 - Performance **guarantees** vs. empirical **observations**
 - \(n^{1.2} \) algo. looks better than a 100\(n \) one for a loooooong time*!
 - Upper bounds: universality of results, e.g., performance guarantees for **any** linear/monotone/... function
 - Lower bounds: what is the best possible performance that **any algorithm** can have?
 - Understand **working principles** behind the processes
 - Theory as **source of inspiration**

Happy to discuss this!

*if and only if \(n \leq 10^{10} \)
Theory and Experiments: Complementary Results

<table>
<thead>
<tr>
<th>Theory</th>
<th>Empirics</th>
</tr>
</thead>
<tbody>
<tr>
<td>- cover all problem instances of arbitrary sizes → guarantee!</td>
<td>- only a finite number of instances of bounded size → have to see how representative this is</td>
</tr>
<tr>
<td>- proof tells you the reason</td>
<td>- only tells you numbers</td>
</tr>
<tr>
<td>- only models for real-world instances (realistic?)</td>
<td>- real-world instances</td>
</tr>
<tr>
<td>- limited scope, e.g., (1+1) EA</td>
<td>- everything you can implement</td>
</tr>
<tr>
<td>- limited precision, e.g., (O(n^2))</td>
<td>- exact numbers</td>
</tr>
<tr>
<td>- implementation independent</td>
<td>- depends on implementation</td>
</tr>
<tr>
<td>- finding proofs can be difficult</td>
<td>- can be cheap (well, depends….)</td>
</tr>
</tbody>
</table>
Theory and Experiments: Complementary Results

<table>
<thead>
<tr>
<th>Theory</th>
<th>Empirics</th>
</tr>
</thead>
<tbody>
<tr>
<td>cover all problem instances of arbitrary size</td>
<td>only a finite number of instances of bounded size</td>
</tr>
<tr>
<td>→ guarantee</td>
<td>→ this is only a representative result</td>
</tr>
<tr>
<td>proof tells you the reason</td>
<td>only tells you numbers</td>
</tr>
<tr>
<td>only models real-world instances (realistic?)</td>
<td>everything you can implement</td>
</tr>
<tr>
<td>limited scope, e.g., (1+1) EA</td>
<td>limited precision, e.g., implementation</td>
</tr>
<tr>
<td>implementation independent</td>
<td>depends on implementation</td>
</tr>
<tr>
<td>finding proofs can be difficult</td>
<td>can be cheap (well, depends…)</td>
</tr>
</tbody>
</table>

→ Ideal: Combine theory and experiments. **Difficulty:** Get theoretically and empirically working researchers talk to each other…
Some Recent Results: 1. Local Update Rules

- Examples: provable performance gain for the $(1+(\lambda,\lambda))$ GA:
 - 3 parameters:
 - “offspring population size” λ (# points sampled per iteration)
 - “mutation strength” p (radius of the search)
 - “crossover probability” c (trading old vs. new information)
 - complex interactions between these parameters
 - mathematical proof: best static parameter choice gives a total expected runtime of $\Theta\left(n \frac{\sqrt{\log n \log \log n}}{\sqrt{\log \log n}}\right)$ on the problem of minimizing the Hamming distance [DoerrDoerr15, Doerr16, DoerrDoerr17]
- Surprise: very simple online parameter selection mechanism yields a $\Theta(n)$ expected runtime [DoerrD15b, DoerrDoerr17]
 - This is optimal!

\[
\begin{align*}
 z &= 1 1 1 1 1 0 0 0 0 \\
 x &= 0 0 0 1 1 1 1 0 0 \\
 f_z(x) &= 5
\end{align*}
\]
Simple Local Update Rule

- Optimal dynamic parameter choice
 - “offspring population size” \(\lambda = \sqrt{\frac{n}{n-f(x)}} \)
 - “mutation strength” \(p = \lambda/n \)
 - “crossover probability” \(c = 1/\lambda \)

→ only one parameter left!

- 1/5\(^{th}\) success rule:
 - If at the end of an iteration
 - we have an improvement \((f(y) > f(x))\) then \(\lambda \leftarrow \lambda/F \);
 - No improvement \((f(y) \leq f(x))\) then \(\lambda \leftarrow \lambda F^{1/4} \);

Optimal parameter selection schemes can be very simple!
Experimental Results for Self-Adjusting Version

- (1+1) EA
- (1+(8,8)) GA
- self-adjusting (1+(λ,λ)) GA
- fitness-dependent (1+(λ,λ)) GA

The graph shows the optimization time per 1000 generations (y-axis) against the number of generations (x-axis) for different evolutionary algorithms. The results indicate that the self-adjusting and fitness-dependent versions perform better than the basic (1+1) EA and (1+(8,8)) GA, especially for larger values of n.
Example Run Self-Adjusting \((1 + (\lambda, \lambda))\) GA

\[
\lambda^* = \sqrt{\frac{n}{n - f(x)}}
\]
2nd Example: Online Learning

- The main idea for learning-/reward-type adjustment rules is
 - have a set S of possible parameter values
 - according to some rule, test all or some of these values
 - update the likelihood to employ the tested value based on the feedback from the optimization process

- Picture to have in mind: multi-armed bandits (MAB)
 - K experts
 - in each round, you have to chose one of them and you follow his advice
 - you update your confidence in this expert depending on the quality of his forecast
2nd Example: Online Learning, Comments

- **Exploitation vs. exploration trade off**
 - **exploitation:** we want, of course, to use an optimal parameter value as often as possible
 - **exploration:** we want to test each parameter value sufficiently often, to make sure that we select the “optimal” one

- **Differences to classical learning/ML setting**
 1. regret minimization (learning) vs. optimization
 2. “rewards” change over time! (≠ “classical” MAB setting)
 → Frequently found feature: *time-discounted methods*. That is, a good advice in the past is worth less than a good advice now
UCB = Upper Confidence Bound

- **Upper Confidence Bound**, aka \(UCB \)-mechanisms are well known in learning theory, cf. work by Auer, Cesa-Bianchi, Fischer ML’02 [ACBF02]
- Main ideas:
 - cUCB greedily selects the operator (the “arm”) maximizing the following expression:
 \[
 \text{expected reward} + \sqrt{c \log \frac{\sum_k n_{k,t}}{n_{j,t}}},
 \]
 where
 - \(n_{k,t} \) is the number of times the \(k \)-th arm has been pulled in the first \(t \) iterations and
 - \(c \) is a parameter that allows to control the exploration likelihood (vs. exploitation, which is controlled by the first summand)
 - tuned and other variants of this algorithm exist, cf. [ACBF02] for details and empirical evaluations
Upper Confidence Bound, aka UCB-mechanisms are well known in learning theory, cf. work by Auer, Cesa-Bianchi, Fischer ML’02 [ACBF02]

Main ideas:
- cUCB greedily selects the operator (the “arm”) maximizing the following expression:
 \[
 \text{expected reward} + \sqrt{c \log \frac{\sum n_{k,t}}{n_{j,t}}},
 \]
 where
 - \(n_{k,t} \) is the number of times the \(k \)-th arm has been pulled in the first \(t \) iterations and
 - \(c \) is a parameter to control the exploration likelihood (vs. exploitation, which is controlled by the first summand)
 - Other variants of this algorithm exist, cf. [ACBF02] for details and empirical evaluations
(Almost) Optimality of Learning-Based Parameter Selection

- **ε-greedy variable size neighborhood heuristic**
 - Fix a small number of possible parameter values $[r] := \{1, 2, ..., r\}$
 - Estimate the expected fitness gain $v_{t-1}[k]$ from using k-bit flips (using data from the past, see next slide)
 - In iteration t
 - with probability δ, use a random $k \in [r]$ “exploring mut. strengths”
 - with prob. $1 - \delta$, use a k that maximized $v_{t-1}[k]$ “take the most efficient k”
 - Update the expected fitness gain estimations

- For the Hamming distance problem, this self-adjusting mutation strength in almost all iterations uses the (in this situation) optimal mutation strength.
- The iterations that do not operate with the optimal mutation rate account for an additive $o(n)$ contribution to the total runtime and are thus negligible.
- This adaptive mechanism is provably faster than all static unbiased mutation operators!
- Fixed budget performance: our algorithm with the same budget computes a solution that asymptotically is 13% closer to the optimum than RLS (given that the budget is at least $0.2675n$).
- Promising empirical results for other problems

[Doerr, Doerr, Yang: PPSN 2016]
Estimating the Expected Fitness Gain

- Expected fitness gain estimation for using a k-bit flip:
 \[v_t[k] := \frac{\sum_{s=1}^{t} 1_{r_s=k} (1 - \epsilon)^{t-s} (f(x_s) - f(x_{s-1}))}{\sum_{s=1}^{t} 1_{r_s=k} (1 - \epsilon)^{t-s}} \]

- $1/\epsilon$: “forgetting rate”, determines the decrease of the importance of older information. $1/\epsilon$ is (roughly) the information half-life

- The “velocity” can be computed iteratively in constant time by introducing a new parameter $w_t[r] := \sum_{s=1}^{t} 1_{r_s=r} (1 - \epsilon)^{t-s}$

- This mechanism seems to work well also for other problems
 - So far, no other theoretical results available
 - A few experimental results for LeadingOnes and the Minimum Spanning Tree problem exist, see next 2 slides (these results were also presented in [DDY16a])
 - Again, much more work is needed to see how the algorithm performs on other problems and how to set the parameters δ and ϵ
Questions

1. Is online parameter selection interesting for you?
 ▪ What in particular? Or why not?
2. Research on dynamic multi-armed bandits in (M)L
 ▪ state-of-the-art?
 ▪ theoretical results?
3. (Poster session/Dinner/Coffee breaks/E-Mail/Paris:)
 Theoretical results in Algorithm Selection/Configuration
 ▪ what is known?
 ▪ what would be an interesting result for you?