

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

Federico Pagnozzi and Thomas Stützle

Automatic design of Hybrid Stochastic Local Search Algorithms

A configurable metaheuristic framework

Design Space Specification

- Divide the HSLS in components
- Expose the design choices as parameters
 - The components
 - The rules to combine them
- Use automatic configuration tools to select the best combination

Dividing the HSLS in its components

HSLS code outline

s₀ := initialSolution()

s* := ls(s₀)

repeat

- s' := perturbation(s*)
- s" := ls(s')
- s* := acceptanceCriterion(s", s*)
- until termination criterion (stop) is satisfied return s*
- Problem Independent Components
 - All the components that need only the objective function value to work
 - General structure of the HSLS algorithms
- Problem Dependent Components
 - Neighborhoods

Introducing the EMILI framework

- Easily Modifiable Iterated Local search Implementation
- Designed to be modular and flexible
 - C++
 - Sharing components over several problems
- Already Supports several problems
 - Permutation Flowshop Problem
- Heuristics for the generation of the initial solution
- Perturbations

Describing how to combine the components

- We need to define rules like:
 - An ILS cannot have a tabu tenure
 - A VND has multiple neighborhoods
 - An SA has a perturbation but no LS
- We can represent these rules as the grammar of a simple language

- QAP
- Hybrid Flowshop Problem
- Inventory Routing Problem
- Exam Timetabling Problem
- Vehicle Routing

Permutation Flow shop Scheduling Problem

