
My perspective on

Programming by Configuration:
An “emerging” paradigm in automated algorithm design

Steven Adriaensen

AI-lab, Vrije Universiteit Brussel, Belgium

1

Outline

1. Algorithm Design

– What is the algorithm design problem?

– How is it currently being solved?

2. Programming by Configuration (PbC)

– In a nutshell…

– Limitations, how they could be addressed, and my
own research in this direction…

2

1. Algorithm Design Problem (ADP)

There are many ways to solve a given problem.
• Multiple ways to formulate a problem
• Multiple (parametrized?) solvers exist.
• Multiple implementations of a single solution approach.

 When solving a problem we face design choices

What is the best way?
• Minimizing execution time
• Maximizing solution quality

“The problem of how to best solve problems”

3

1. Contemporary Solution Approaches

ADPs and attempts to solve them are ubiquitous and fragmented…
Algorithm Configuration, Instance-based Selection, (Dynamic) Portfolios,
Parameter Control, Reactive Search, Hyper-heuristics, Search-based Software
Engineering, Intelligent Compilers, Machine Learning, Reinforcement
Learning, Learning Classifier Systems, Program Synthesis, Genetic
Programming, Ant Programming, Logical Programming, Probabilistic
Programming, Neural Turing Machines,…

 How to best solve the ADP is an ADP itself!
(idea: apply recursively: configuring/selecting configurators, meta-learning,…)

Research objective: Towards enabling a more unified approach to automated
algorithm design, maximally exploiting the nature of the problem at hand.

4

1. Manually

5

Process is...
• tedious
• time-consuming
• costly
• untraceable

Result is...
• sub-optimal?
• overly complex?
• unreliable?

1. Automated

Idea:
What? Let a computer design its own programs
Why? Computers are faster, cheaper and unbiased
How? Provide an algorithm for the ADP…

i.e. formalizing a design process.

Fully automated: Program Synthesis, Genetic Programming, Declarative
Programming, and (more recently) Neural Turing Machines.
 Scalability issues…

6

1. Semi-automated

Programming by Optimization (PbO) (Holger Hoos, 2012)
1. Leave difficult decisions open at design time

2. Generate the best algorithm instance for a specific use-case automatically.

7

Program a Design Space Single Algorithm

1. Who makes which design choices?

Expert Knowledge
Available to make
Design Decision?

Manual Fully Automatic Semi-automatic
(e.g. PbO)

Low

High

1. Who makes which design choices?

Expert Knowledge
Available to make
Design Decision?

Manual Fully Automatic Semi-automatic
(e.g. PbO)

Low

High

Ad hoc
design

decisions

1. Who makes which design choices?

Expert Knowledge
Available to make
Design Decision?

Manual Fully Automatic Semi-automatic
(e.g. PbO)

Low

High
Inefficient

use of expert
knowledge

Ad hoc
design

decisions

Open design choices:

1. Programming by Optimization (PbO)

11

11

How to formulate the
ADP as an optimization

problem?

How to solve the
resulting optimization

problem?

1. Per-set Algorithm Selection Problem
(set-ASP)

Given
𝐴: algorithm space
𝑋: input space
𝐷: input distribution (“use case”)
𝑝: 𝑋 × 𝐴 → ℝ: performance evaluation function

Find

𝑎∗ = argmax
𝑎𝜖𝐴

𝑥𝜖𝑋

𝐷 𝑥 ∗ 𝐄[𝑝 𝑥, 𝑎]

12

1. Set-ASP reduction

13

E.g.
• configurators (ParamILS,

iRace, GGA, SMAC etc.)
• Genetic Programming (GP),
• generative hyper-heuristics
• SBSE (program optimization)

- …

1. Per-input Algorithm Selection
Problem (input-ASP, Rice, 1976)

Given

𝐴: algorithm space

𝑋: input space𝐷:

𝑝: 𝑋 × 𝐴 → ℝ: performance evaluation function

Find 𝑠∗ satisfying

𝑠∗(𝑥) = argmax
𝑎𝜖𝐴

𝐄[𝑝(𝑥, 𝑎)]

14

1. Input-ASP reduction

15

E.g.
• portfolio builders
• input specific configurators

(Hydra, ISAC etc.)
• context-aware compilers

- …

1. Dynamic-ASP reduction

16

E.g.
• (dynamic) portfolios,
• parameter control,
• (selection) hyper-heuristics
…

1. Dynamic Algorithm Selection Problem
(Adriaensen et. al, IJCAI, 2016)

Given:

• f

• f

Find:
A policy 𝜋 maximizing the expected future reward.

17

Design Space: Non-Deterministic TM

Desirability Execution: Rewards associated with
moves performed by TM

A function mapping
- input
- transitions (leading up to choice point)
to one of the possible next transitions.

1. Reinforcement Learning Perspective

18

Algorithm Selection
Problems

Reinforcement Learning (RL) Problems

Set-ASP (offline) Best-arm Identification Problem

Set-ASP (online) Multi-armed Bandit Problem

Input-ASP Contextual Bandit Problem

Dynamic ASP Markov Decision Problem

Cross-transfer:
• RL literature may help you understand and solve these problems better!
• RL community also needs to consider ASP methods in practical applications...

Formulate the ADP as a Configuration Problem

2. Programming by Configuration

19

19
E.g. ParamILS, iRace, GGA, SMAC

2. Programming by Configuration

ADP ↔ ACP

20

Open design choices Parameters

Alternative decisions Range of values

Design space Configuration space

Design Configuration

C = {0,1,2} x {0,1} x {0,1}

c = (0,1,1)

Success Story

Hard Combinatorial Optimization:
- Spear SAT-solver: 500x speedup
- SATenstein: 1.6x to 218x speedup
…

Mixed Integer Programming:
- IBM CPLEX: 2-500x speedup

Machine learning:
- Auto-Weka: Similar/better than best with default settings.

Many more: www.prog-by-opt.net

21

http://www.prog-by-opt.net/

Limitations?

22

w.r.t. formulating the ADP as a Configuration Problem

E.g. ParamILS, iRace, GGA, SMAC

Quality of the resulting design?

Question: Is it theoretically possible to always obtain the
same quality of design using PbC, which solves the ADP by set-
ASP reduction, as those design approaches which solve it
using input-ASP or dynamic-ASP reductions?

For instance: Given unlimited resources. Can we, using tuners
(e.g. ParamILS, iRace or SMAC), always design algorithms as
good as those obtained by per instance tuners (Hydra/ISAC)?
How about using parameter control?

23

Set-ASP ≡𝑻 input−ASP ≡𝑻 dynamic ASP?

No?

“Configurators return a single algorithm
to be used on all possible inputs.”

average-case performance
dependant on input-distribution

(we must re-optimize whenever the use-case changes…)

“Portfolio builders return a portfolio of non-dominated algorithms.”
best-case performance

Input-distribution independent

Dynamic approaches: even more powerful!?
(ability to adapt to stochastic events)

24

Yes!

“A (dynamic) portfolio solver is just another algorithm”
Formulate the algorithm space of the set-ASP to include it.

Consequences:
• Discrimination of (dynamic) portfolio solvers is misguided:

– Negative: Excluding them from competitions…
– Positive: Free Lunch for (dynamic) portfolios…

• Upward reductions:
– Input-ASP ≤ Set-ASP (Θ ~ family of selection mappings)
– Input-ASP ≤ Dynamic-ASP (Θ ~ family of policies)
 RL: Configurator ~ policy search approach to MDP

• The dynamic-ASP can be solved offline

25

Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)
2. Use the resulting design.

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)

26

Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)
2. Use the resulting design.

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)

27

When have we
trained enough?

Changing use
case…

Which training
inputs?

Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”) Pure exploration
2. Use the resulting design. Pure exploitation

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)

28

Exploration vs. exploitation trade-off

Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)
2. Use the resulting design.
3.
Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)

29

adaptation
≠

learning

What is 𝝅?
Learning curves!

Abuse RL…

Semi-online

In many practical settings:

• Minimize response time > total resource usage

• Availability of (cheap, free) spare resources:
– Time (overnight, in-between requests)

– Parallelism (unused cores, processors, computers)

Semi-online:

• Serve requests using the best known design

 pure exploitation

• Use spare resources to refine it pure exploration

30

Anytime ~ semi-online

Given: Anytime ADP solver (e.g. ParamILS, SMAC):

1. Start the design process in a separate thread.

2. For each request to solve 𝑥 (asynchronous)

a) Obtain 𝑎incumbent from the design process.

b) Solve 𝑥 using 𝑎incumbent

c) Return solution to the client.

d) Add 𝑥 to the set of training inputs (+ result of run)

(possibly discounting to address non-stationarity)

31

