My perspective on

Programming by Configuration: An "emerging" paradigm in automated algorithm design

Steven Adriaensen

Al-lab, Vrije Universiteit Brussel, Belgium

Outline

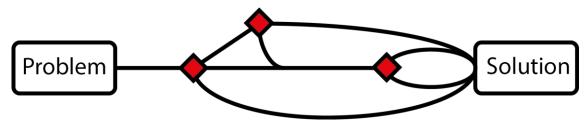
- 1. Algorithm Design
 - What is the algorithm design problem?
 - How is it currently being solved?

- 2. Programming by Configuration (PbC)
 - In a nutshell...
 - Limitations, how they could be addressed, and my own research in this direction...

1. Algorithm Design Problem (ADP)

There are many ways to solve a given problem.

- Multiple ways to formulate a problem
- Multiple (parametrized?) solvers exist.
- Multiple implementations of a single solution approach.
- → When solving a problem we face *design choices*



What is the **best way**?

- Minimizing execution time
- Maximizing solution quality

"The problem of how to best solve problems"

1. Contemporary Solution Approaches

ADPs and attempts to solve them are ubiquitous and fragmented...

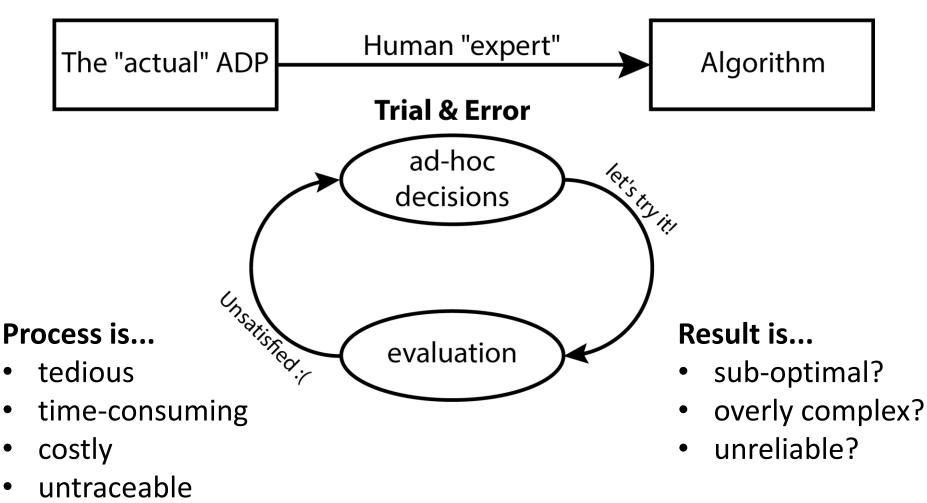
Algorithm Configuration, Instance-based Selection, (Dynamic) Portfolios, Parameter Control, Reactive Search, Hyper-heuristics, Search-based Software Engineering, Intelligent Compilers, Machine Learning, Reinforcement Learning, Learning Classifier Systems, Program Synthesis, Genetic Programming, Ant Programming, Logical Programming, Probabilistic Programming, Neural Turing Machines,...

→ How to best solve the ADP is an ADP itself!

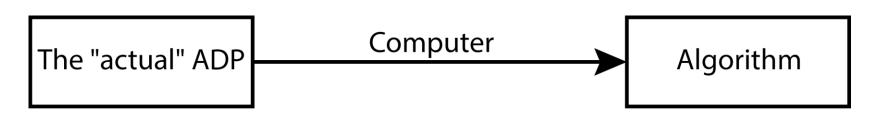
(idea: apply recursively: configuring/selecting configurators, meta-learning,...)

<u>Research objective</u>: Towards enabling a more **unified approach** to automated algorithm design, maximally **exploiting the nature of the problem at hand.**

1. Manually



1. Automated



Idea:

- What? Let a computer design its own programs
- Why? Computers are faster, cheaper and unbiased
- How? Provide an algorithm for the ADP... i.e. formalizing a design process.

Fully automated: Program Synthesis, Genetic Programming, Declarative Programming, and (more recently) Neural Turing Machines.

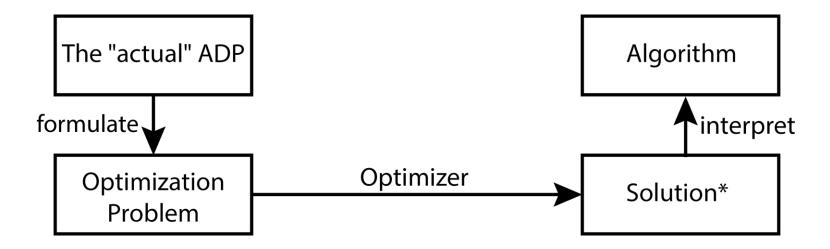
➔ Scalability issues...

1. Semi-automated

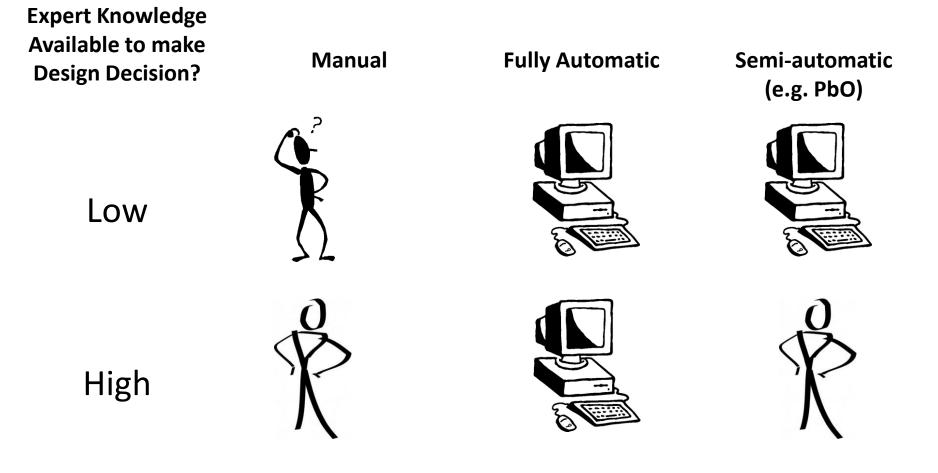
Programming by Optimization (PbO) (Holger Hoos, 2012)

1. Leave difficult decisions open at design time

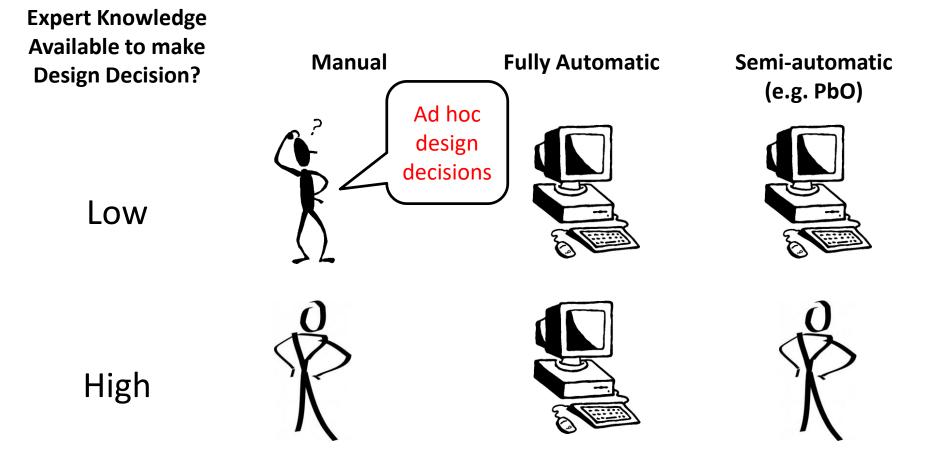
2. Generate the best algorithm instance for a specific use-case *automatically*.



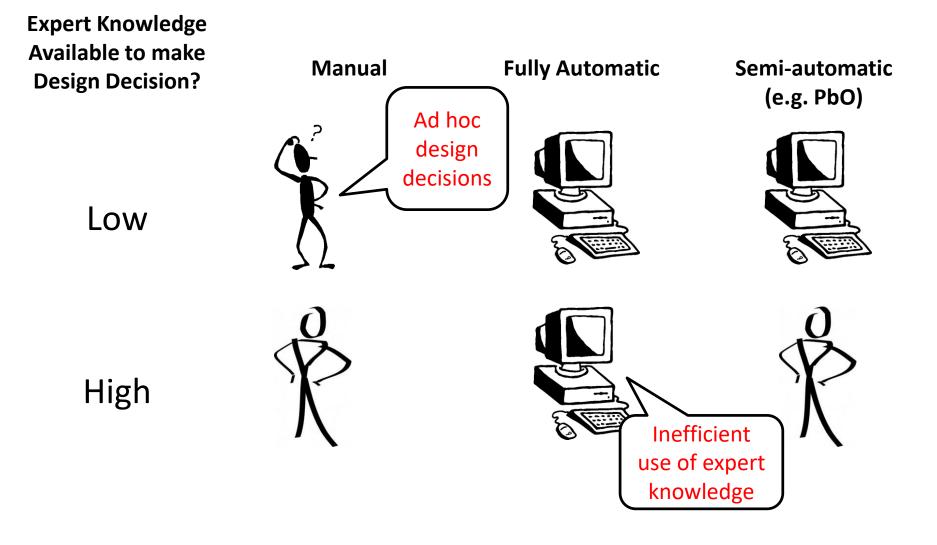
1. Who makes which design choices?



1. Who makes which design choices?

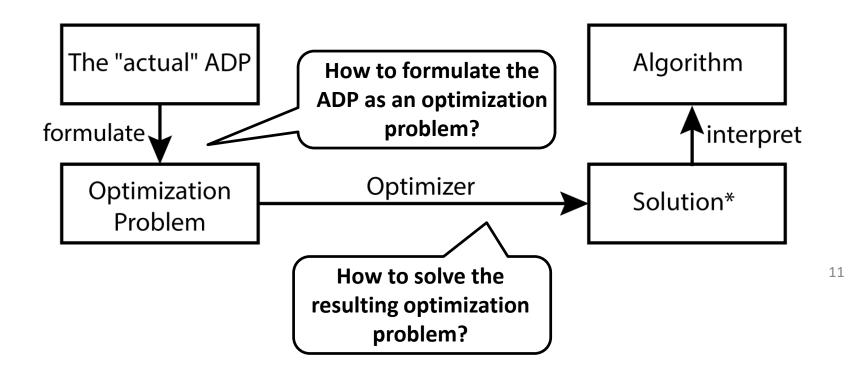


1. Who makes which design choices?



1. Programming by Optimization (PbO)

Open design choices:



1. Per-set Algorithm Selection Problem (set-ASP)

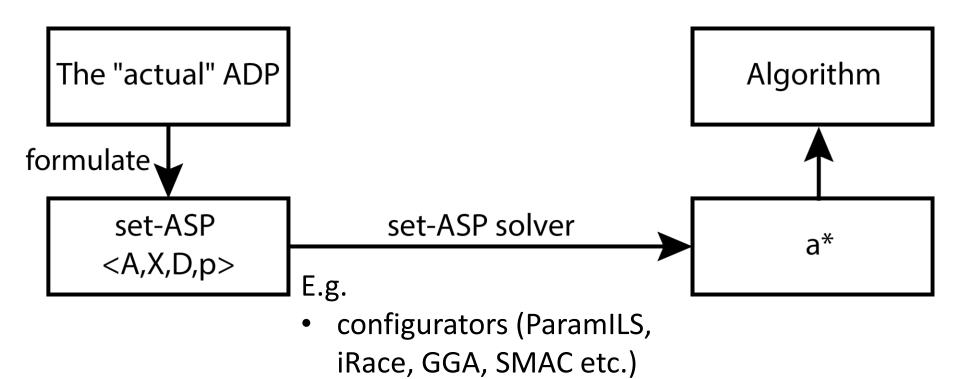
Given

- A: algorithm space
- *X*: input space
- *D*: input distribution (*"use case"*)
- $p: X \times A \rightarrow \mathbb{R}$: performance evaluation function

Find

$$a^* = \underset{a \in A}{\operatorname{arg\,max}} \sum_{x \in X} D(x) * \mathbf{E}[p(x, a)]$$

1. Set-ASP reduction



- Genetic Programming (GP),
- generative hyper-heuristics
- SBSE (program optimization)

. . .

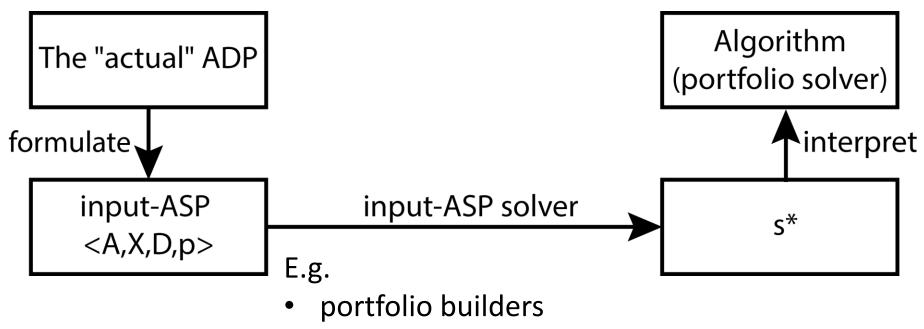
1. Per-input Algorithm Selection Problem (input-ASP, Rice, 1976) Given A: algorithm space X: input space

 $p: X \times A \rightarrow \mathbb{R}$: performance evaluation function

Find s^* satisfying

$$s^*(x) = \underset{a \in A}{\operatorname{arg\,max}} \mathbf{E}[p(x, a)]$$

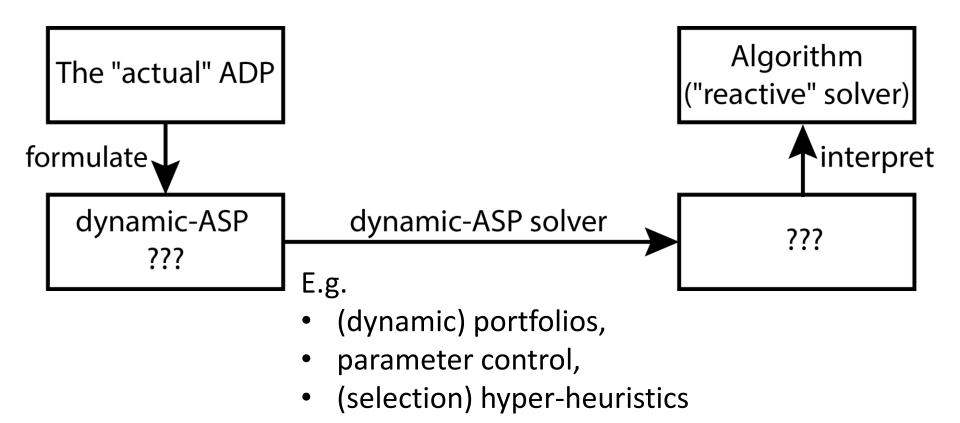
1. Input-ASP reduction



- input specific configurators (Hydra, ISAC etc.)
- context-aware compilers

...

1. Dynamic-ASP reduction



...

1. Dynamic Algorithm Selection Problem (Adriaensen et. al, IJCAI, 2016)

Given:

- Design Space:
- Desirability Execution:

Non-Deterministic TM

Rewards associated with moves performed by TM

Find:

A **policy** π maximizing the expected future reward.

A function mapping

- input
- transitions (leading up to choice point)
 to one of the possible next transitions.

1. Reinforcement Learning Perspective

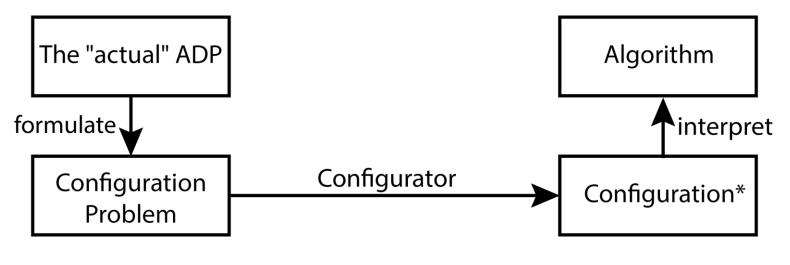
Algorithm Selection Problems	Reinforcement Learning (RL) Problems
Set-ASP (offline)	Best-arm Identification Problem
Set-ASP (online)	Multi-armed Bandit Problem
Input-ASP	Contextual Bandit Problem
Dynamic ASP	Markov Decision Problem

Cross-transfer:

- RL literature may help you understand and solve these problems better!
- RL community also needs to consider ASP methods in practical applications...

2. Programming by Configuration

Formulate the ADP as a Configuration Problem



E.g. ParamILS, iRace, GGA, SMAC

19

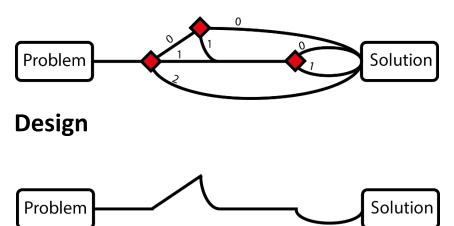
2. Programming by Configuration

ADP

Open design choices

Alternative decisions

Design space



\leftrightarrow ACP

Parameters Range of values Configuration space

 $\mathsf{C} = \{0,1,2\} \times \{0,1\} \times \{0,1\}$

Configuration

c = (0, 1, 1)

Success Story

Hard Combinatorial Optimization:

- Spear SAT-solver: 500x speedup
- SATenstein: 1.6x to 218x speedup

Mixed Integer Programming:

- IBM CPLEX: 2-500x speedup

Machine learning:

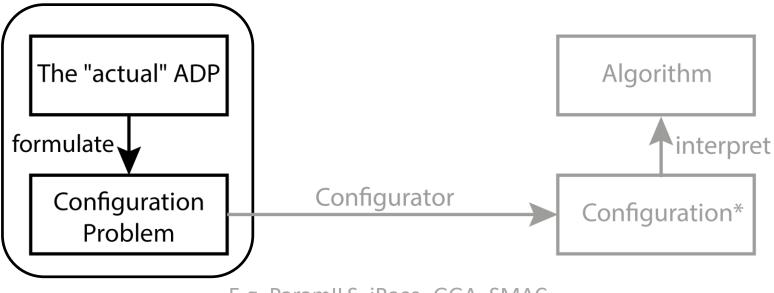
...

- Auto-Weka: Similar/better than best with default settings.

Many more: <u>www.prog-by-opt.net</u>

Limitations?

w.r.t. formulating the ADP as a Configuration Problem



E.g. ParamILS, iRace, GGA, SMAC

Quality of the resulting design?

Question: Is it theoretically possible to always obtain the same quality of design using PbC, which solves the ADP by set-ASP reduction, as those design approaches which solve it using input-ASP or dynamic-ASP reductions?

Set-ASP \equiv_T input-ASP \equiv_T dynamic ASP?

For instance: Given unlimited resources. Can we, using tuners (e.g. ParamILS, iRace or SMAC), always design algorithms as good as those obtained by per instance tuners (Hydra/ISAC)? How about using parameter control?

No?

"Configurators return a single algorithm to be used on all possible inputs." average-case performance dependant on input-distribution (we must re-optimize whenever the use-case changes...)

"Portfolio builders return a portfolio of non-dominated algorithms."

best-case performance Input-distribution independent

Dynamic approaches: even more powerful!?

(ability to adapt to stochastic events)

Yes!

"A (dynamic) portfolio solver is just another algorithm"

→ Formulate the algorithm space of the set-ASP to include it.

Consequences:

- Discrimination of (dynamic) portfolio solvers is misguided:
 - Negative: Excluding them from competitions...
 - Positive: Free Lunch for (dynamic) portfolios...
- Upward reductions:
 - Input-ASP \leq Set-ASP ($\Theta \sim$ family of selection mappings)
 - Input-ASP \leq Dynamic-ASP ($\Theta \sim$ family of policies)

 \clubsuit RL: Configurator \sim policy search approach to MDP

• The dynamic-ASP can be solved offline

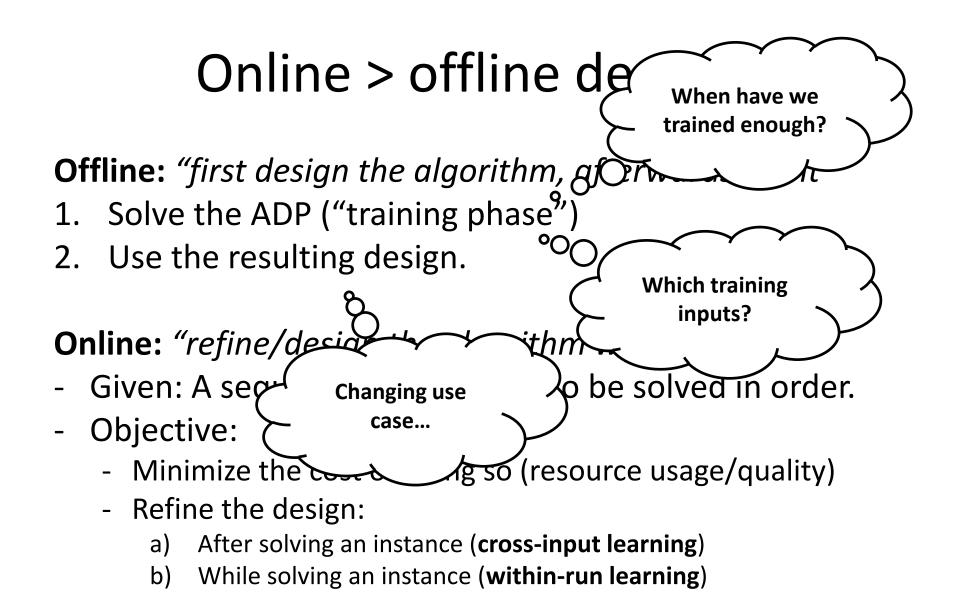
Online > offline design?

Offline: *"first design the algorithm, afterwards use it"*

- 1. Solve the ADP ("training phase")
- 2. Use the resulting design.

Online: *"refine/design the algorithm while using it"*

- Given: A sequence of instances to be solved in order.
- Objective:
 - Minimize the cost of doing so (resource usage/quality)
 - Refine the design:
 - a) After solving an instance (cross-input learning)
 - b) While solving an instance (within-run learning)



Online > offline design?

Offline: "first design the algorithm, afterwards use it"

- 1. Solve the ADP ("training phase") P
- 2. Use the resulting design.

Pure exploration Pure exploitation

Online: *"refine/design the algorithm while using it"*

- Given: A sequence of instances to be solved in order.
- Objective:
 - Minimize the cost of doing so (resource usage/quality)
 - Refine the design:
 - a) After solving an instance (cross-input learning)
 - b) While solving an instance (within-run learning)

Exploration vs. exploitation trade-off

Online > offline design?

Offline: *"first design the algorithm, afterwards use it"*

- 1. Solve the ADP ("training phase")
- Use the resulting design. 2.
- 3.

- solved in order. adaptation Given: A sequence
- **Objective:** learning

° O

Abuse RL...

29

- Minimize the cost resource usag What is π ? Learning curves!
- Refine the design:
 - After solving an instance (cross-input learning) O a)
 - While solving an instance (within-run learning) b)

Semi-online

In many practical settings:

- Minimize **response time** > total resource usage
- Availability of (cheap, free) **spare resources**:
 - Time (overnight, in-between requests)
 - Parallelism (unused cores, processors, computers)

Semi-online:

- Serve requests using the best known design

 pure exploitation
- Use spare resources to refine it → pure exploration

Anytime ~ semi-online

Given: Anytime ADP solver (e.g. ParamILS, SMAC):

- 1. Start the design process in a separate thread.
- 2. For each request to solve *x* (*asynchronous*)
 - a) Obtain $a_{\text{incumbent}}$ from the design process.
 - b) Solve x using $a_{incumbent}$
 - c) Return solution to the client.
 - d) Add x to the set of training inputs (+ result of run)(possibly discounting to address non-stationarity)