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Outline

1. Algorithm Design

– What is the algorithm design problem?

– How is it currently being solved?

2. Programming by Configuration (PbC)

– In a nutshell…

– Limitations, how they could be addressed, and my 
own research in this direction…
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1. Algorithm Design Problem (ADP)

There are many ways to solve a given problem.
• Multiple ways to formulate a problem
• Multiple (parametrized?) solvers exist.
• Multiple implementations of a single solution approach.

 When solving a problem we face design choices

What is the best way?
• Minimizing execution time
• Maximizing solution quality

“The problem of how to best solve problems”
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1. Contemporary Solution Approaches

ADPs and attempts to solve them are ubiquitous and fragmented…
Algorithm Configuration, Instance-based Selection, (Dynamic) Portfolios, 
Parameter Control, Reactive Search, Hyper-heuristics, Search-based Software 
Engineering, Intelligent Compilers, Machine Learning, Reinforcement 
Learning, Learning Classifier Systems, Program Synthesis, Genetic 
Programming, Ant Programming, Logical Programming, Probabilistic 
Programming, Neural Turing Machines,…

 How to best solve the ADP is an ADP itself! 
(idea: apply recursively: configuring/selecting configurators, meta-learning,…)

Research objective: Towards enabling a more unified approach to automated 
algorithm design, maximally exploiting the nature of the problem at hand.
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1. Manually
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Process is...
• tedious
• time-consuming
• costly
• untraceable

Result is...
• sub-optimal?
• overly complex?
• unreliable?



1. Automated

Idea: 
What? Let a computer design its own programs
Why? Computers are faster, cheaper and unbiased
How? Provide an algorithm for the ADP… 

i.e. formalizing a design process.

Fully automated: Program Synthesis, Genetic Programming, Declarative 
Programming, and (more recently) Neural Turing Machines.
 Scalability issues…
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1. Semi-automated

Programming by Optimization (PbO) (Holger Hoos, 2012)
1. Leave difficult decisions open at design time     

2. Generate the best algorithm instance for a specific use-case automatically.
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Program a Design Space  Single Algorithm



1. Who makes which design choices?

Expert Knowledge 
Available to make 
Design Decision?

Manual Fully Automatic Semi-automatic
(e.g. PbO)
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Open design choices:

1. Programming by Optimization (PbO)
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How to formulate the 
ADP as an optimization 

problem? 

How to solve the 
resulting optimization 

problem?



1. Per-set Algorithm Selection Problem 
(set-ASP)

Given
𝐴: algorithm space
𝑋: input space
𝐷: input distribution (“use case”)
𝑝: 𝑋 × 𝐴 → ℝ:  performance evaluation function

Find

𝑎∗ = argmax
𝑎𝜖𝐴



𝑥𝜖𝑋

𝐷 𝑥 ∗ 𝐄[𝑝 𝑥, 𝑎 ]
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1. Set-ASP reduction
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E.g. 
• configurators (ParamILS, 

iRace, GGA, SMAC etc.)  
• Genetic Programming (GP),
• generative hyper-heuristics
• SBSE (program optimization)     

- …



1. Per-input Algorithm Selection 
Problem (input-ASP, Rice, 1976)

Given

𝐴: algorithm space

𝑋: input space𝐷: 

𝑝: 𝑋 × 𝐴 → ℝ:  performance evaluation function

Find 𝑠∗ satisfying

𝑠∗(𝑥) = argmax
𝑎𝜖𝐴

𝐄[𝑝(𝑥, 𝑎)]
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1. Input-ASP reduction
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E.g. 
• portfolio builders
• input specific configurators 

(Hydra, ISAC etc.)  
• context-aware compilers     

- …



1. Dynamic-ASP reduction
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E.g. 
• (dynamic) portfolios,
• parameter control, 
• (selection) hyper-heuristics
…



1. Dynamic Algorithm Selection Problem 
(Adriaensen et. al, IJCAI, 2016)

Given:

• f

• f

Find: 
A policy 𝜋 maximizing the expected future reward.
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Design Space: Non-Deterministic TM

Desirability Execution: Rewards associated with 
moves performed by TM

A function mapping
- input
- transitions (leading up to choice point)
to one of the possible next transitions.



1. Reinforcement Learning Perspective
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Algorithm Selection 
Problems

Reinforcement Learning (RL) Problems

Set-ASP (offline) Best-arm Identification Problem

Set-ASP (online) Multi-armed Bandit Problem

Input-ASP Contextual Bandit Problem

Dynamic ASP Markov Decision Problem

Cross-transfer:
• RL literature may help you understand and solve these problems better!
• RL community also needs to consider ASP methods in practical applications...



Formulate the ADP as a Configuration Problem

2. Programming by Configuration
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E.g. ParamILS, iRace, GGA, SMAC



2. Programming by Configuration

ADP  ↔ ACP
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Open design choices Parameters

Alternative decisions Range of values

Design space Configuration space

Design Configuration

C = {0,1,2} x {0,1} x {0,1}

c = (0,1,1)



Success Story

Hard Combinatorial Optimization:
- Spear SAT-solver: 500x speedup
- SATenstein: 1.6x to 218x speedup
…

Mixed Integer Programming:
- IBM CPLEX: 2-500x speedup

Machine learning:
- Auto-Weka: Similar/better than best with default settings.

Many more: www.prog-by-opt.net
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http://www.prog-by-opt.net/


Limitations?
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w.r.t. formulating the ADP as a Configuration Problem

E.g. ParamILS, iRace, GGA, SMAC



Quality of the resulting design?

Question: Is it theoretically possible to always obtain the 
same quality of design using PbC, which solves the ADP by set-
ASP reduction, as those design approaches which solve it 
using input-ASP or dynamic-ASP reductions?

For instance: Given unlimited resources. Can we, using tuners 
(e.g. ParamILS, iRace or SMAC), always design algorithms as 
good as those obtained by per instance tuners (Hydra/ISAC)? 
How about using parameter control?
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Set-ASP ≡𝑻 input−ASP ≡𝑻 dynamic ASP?



No?

“Configurators return a single algorithm 
to be used on all possible inputs.”

average-case performance
dependant on input-distribution

(we must re-optimize whenever the use-case changes…)

“Portfolio builders return a portfolio of non-dominated algorithms.”
best-case performance

Input-distribution independent

Dynamic approaches: even more powerful!?
(ability to adapt to stochastic events)
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Yes!

“A (dynamic) portfolio solver is just another algorithm”
Formulate the algorithm space of the set-ASP to include it.

Consequences:
• Discrimination of (dynamic) portfolio solvers is misguided:

– Negative: Excluding them from competitions…
– Positive:  Free Lunch for (dynamic) portfolios…

• Upward reductions:
– Input-ASP ≤ Set-ASP (Θ ~ family of selection mappings)
– Input-ASP ≤ Dynamic-ASP (Θ ~ family of policies)
 RL: Configurator ~ policy search approach to MDP

• The dynamic-ASP can be solved offline
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Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)
2. Use the resulting design.

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)
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When have we 
trained enough?

Changing use 
case…

Which training 
inputs?



Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)     Pure exploration
2. Use the resulting design. Pure exploitation

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)
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Exploration vs. exploitation trade-off



Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)     
2. Use the resulting design.
3.
Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)
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adaptation 
≠

learning

What is 𝝅?
Learning curves!

Abuse RL…



Semi-online

In many practical settings:

• Minimize response time > total resource usage

• Availability of (cheap, free) spare resources:
– Time (overnight, in-between requests)

– Parallelism (unused cores, processors, computers)

Semi-online: 

• Serve requests using the best known design  

 pure exploitation

• Use spare resources to refine it  pure exploration
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Anytime ~ semi-online

Given: Anytime ADP solver (e.g. ParamILS, SMAC):

1. Start the design process in a separate thread.

2. For each request to solve 𝑥 (asynchronous)

a) Obtain 𝑎incumbent from the design process.

b) Solve 𝑥 using 𝑎incumbent

c) Return solution to the client.

d) Add 𝑥 to the set of training inputs (+ result of run)

(possibly discounting to address non-stationarity)
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