
For each algorithm:
Obtain executables
Write script for performance extraction

For each feature:
Write script for feature value extraction

Choose a strategy β for creating selection mappings

=>An interface to WEKA is implemented

Add training data (optional)
-------------------------------------------------------------------------
Start performing online algorithm selection

A Java Framework for (Online) Algorithm Selection
With Use Case on the Generalized Assignment Problem

Hans Degroote1, José Luis González Velarde² and Patrick De Causmaecker1

1KU Leuven Department of Computer Science - CODeS & imec-ITEC
²Tecnologico de Monterrey, Mexico

Hans Degroote
KU Leuven Department of CS
Email: Hans.Degroote@kuleuven.be

Contact

• Object oriented system for algorithm selection
 Algorithms automatically selected and executed

• All core components of algorithm selection are 
explicitly present
 User chooses concrete implementation for 

specific problem scenario
• Minimal user-input required

 Executables + scripts for extracting performance 
and feature values

• Applied to the Generalized Assignment Problem

Overview Using the System: Workflow 

Elements of Algorithm Selection

Core elements
-Algorithm space A
-Instance space I

a distribution over I: D
-Performance mapping p: I x A -> R
-Selection mapping λ: I -> A

Helper elements
-Feature space F

=> selection mapping: λ: (I -> ) F -> A
-Training data H: set of tuples (i,ϕi, a, p(a,i))
-Selection mapping init strategy: β: H -> Λ

=> e.g. linear regression, decision tree, K-NN
Note: all this is for deterministic performance

Use Case: Generalized Assignment Problem
Problem: assign each job to exactly 1 agent, with job-specific 
resource usage and a maximum resource capacity for each agent
Goal: minimise assignment costs
Applications: scheduling, routing, production planning… 

Why GAP as use case?
=> It often must be solved repeatedly in limited time

 Models problems at the Operational level 
 Occurs as a subroutine when solving bigger problems

Challenges
• Obtaining executables (and getting them to work)
• Identifying good features
• Deciding how to measure performance

 Specific application must be taken into account

References

• Executing algorithms and keeping track of results
 Executables are automatically called
 Performance is extracted and added to database

• Standard one-shot offline algorithm selection
 Uses WEKA or user-defined ML methods

• Online algorithm selection
 Process new data to improve selection mapping

• Starting from zero (no training data)
 Active learning? 

Idea for future: human in the loop 
• Identify instance regions with poor performance
• Identify the cause:

 No algorithm performs well (=> develop new)
 Features cannot distinguish (=> develop new)
 Init strategy is not good enough (=> find better)

What can the system be used for?

Th
e o

n
ly u

ser effo
rt

J : jobs 
I : agents
cij : assignment-cost matrix 
aij : resource-usage matrix 
bi : capacity constraints
xij : assignment matrix
σ: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

Taken from [1]

[1] Yagiura, Mutsunori, Toshihide Ibaraki, and Fred Glover. "A path relinking approach with ejection chains for 
the generalized assignment problem." European journal of operational research 169.2 (2006): 548-569.
[2] Laguna, M., Kelly, J. P., González-Velarde, J., & Glover, F. (1995). Tabu search for the multilevel generalized 
assignment problem. European journal of operational research, 82(1), 176-189.
[3] Souza, Danilo S., Haroldo G. Santos, and Igor M. Coelho. "A Hybrid Heuristic in GPU-CPU Based on Scatter 
Search for the Generalized Assignment Problem." Procedia Computer Science 108 (2017): 1404-1413.
[4] Alfandari, Laurent, Agnes Plateau, and Pierre Tolla. "A two-phase path relinking algorithm for the 
generalized assignment problem." Proceedings of the Fourth Metaheuristics International Conference. 2001.


