
For each algorithm:
Obtain executables
Write script for performance extraction

For each feature:
Write script for feature value extraction

Choose a strategy β for creating selection mappings

=>An interface to WEKA is implemented

Add training data (optional)
-------------------------------------------------------------------------
Start performing online algorithm selection
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• Object oriented system for algorithm selection
 Algorithms automatically selected and executed

• All core components of algorithm selection are 
explicitly present
 User chooses concrete implementation for 

specific problem scenario
• Minimal user-input required

 Executables + scripts for extracting performance 
and feature values

• Applied to the Generalized Assignment Problem

Overview Using the System: Workflow 

Elements of Algorithm Selection

Core elements
-Algorithm space A
-Instance space I

a distribution over I: D
-Performance mapping p: I x A -> R
-Selection mapping λ: I -> A

Helper elements
-Feature space F

=> selection mapping: λ: (I -> ) F -> A
-Training data H: set of tuples (i,ϕi, a, p(a,i))
-Selection mapping init strategy: β: H -> Λ

=> e.g. linear regression, decision tree, K-NN
Note: all this is for deterministic performance

Use Case: Generalized Assignment Problem
Problem: assign each job to exactly 1 agent, with job-specific 
resource usage and a maximum resource capacity for each agent
Goal: minimise assignment costs
Applications: scheduling, routing, production planning… 

Why GAP as use case?
=> It often must be solved repeatedly in limited time

 Models problems at the Operational level 
 Occurs as a subroutine when solving bigger problems

Challenges
• Obtaining executables (and getting them to work)
• Identifying good features
• Deciding how to measure performance

 Specific application must be taken into account

References

• Executing algorithms and keeping track of results
 Executables are automatically called
 Performance is extracted and added to database

• Standard one-shot offline algorithm selection
 Uses WEKA or user-defined ML methods

• Online algorithm selection
 Process new data to improve selection mapping

• Starting from zero (no training data)
 Active learning? 

Idea for future: human in the loop 
• Identify instance regions with poor performance
• Identify the cause:

 No algorithm performs well (=> develop new)
 Features cannot distinguish (=> develop new)
 Init strategy is not good enough (=> find better)

What can the system be used for?
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J : jobs 
I : agents
cij : assignment-cost matrix 
aij : resource-usage matrix 
bi : capacity constraints
xij : assignment matrix
σ: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
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