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CODeS
 Overview

Algorithm selection attempts to select for each Historical data (H): both the training data and the online data.
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Classic approach: supervised learning ,
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Observation: when selecting an algorithm for a new trainl
instance, its performance becomes known ltrain2 20 F 1000 sec >0 sec 1000 sec
Idea: use this data to improve the model lirain3 15 F 100 sec 500 sec 50 sec
Contributions :

* Online algorithm selection can be modelled as a
contextual bandit
* A methodology for online algorithm selection
* Empirical verification of methodology on ASLIB
—> Processing online data results in better models,
but a simple greedy approach outperforms
exploring alternatives

Challenge: online data is incomplete; direct classification methods cannot use it
Solution: use regression-based methods (f.e. Algorithm 3)

Algorithm 1 Online algorithm selection Algorithm 3 Greedy online algorithm selection strategy

Input: H

Va € A : train regression model for a, based on the rel-
evant records in H. p, , is the resulting performance
prediction for feature value vector ¢

Define A : A(i) = argmax,c 4 Pa.c

Return A

1: Input: training data H 1
2: Input: online strategy 3 2:
3: H = HT

4: for instance 7z do

A = [(H) //Get selection map, based on all data 3:
a = \(72) //Make selection 4
Solve ¢ with a, observing performance p

H = H JU{i,p,a,p} //Add newly generated data

Online Algorithm Selection
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Motivation:

e Selection mapping usually not optimal after
training (biased or incomplete training data)

* Free feedback data is generated while performing
algorithm selection

Challenge: exploration vs. exploitation trade-off.

Solution: use strategies that explore (multi-armed bandit inspired)
* UCB-variant (A (7) = argmax,c 4 (Da,,, + A * 5dg. ) )
* e-greedy (random with probability €, greedy otherwise)
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algorithm selection: e-greedy, LinUCB[1], Randomized 70 online instances handlec and single best can lead to extremely
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Related Work

 Malitsky’s elSAC[4]: requires generation of additional data

setting, but do not test in this setting.

 Gaglialo and Schmidhuber[5]: consider general timeshare allocation; model
it as a standard bandit problem with as arms different time-allocators.

* Non-contextual bandits have been successfully applied to intelligently switch
algorithms while solving a single instance by f.e. Cicerillo and Smith[6], and
Lagoudakis and Littman[7], but without inter-instance knowledge transfer

 Misir and Sebag[9] modelled algorithm selection as a collaborative filtering .
problem. Can also handle incomplete data. Mention possibility of online

Current + Future Work

* Investigate why explicit exploration is not beneficial
» Too much training data? Probably not, similar results with less
» Parameter tuning? Probably not; verified for e-greedy
» Bad exploration strategies? Perhaps
» Improving regression models do not imply overall improvements? Perhaps
» Greedy explores in a way? Perhaps

Use methods from contextual bandit literature

* |nvestigate start-from-zero setting
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