

Open Algorithm Selection Challenge

Lars Kotthoff <u>Marius Lindauer</u> Jan N. v. Rijn

COSEAL Workshop 2017, Brussels

Algorithm Selection [Rice '76]

2

History: ICON Challenge on Algorithm Selection '15

- Submissions: AS systems
- But:
 - Time limit of 12h to train selector
 - Scenarios were known beforehand, but unknown train/test split
 - Only single pre-solver allowed
 - Dynamic selection of feature groups allowed

Open Algorithm Selection Challenge (OASC)

Differences to ICON AS Challenge (2015)

- 1. Submission: Predictions on unknown test data (2:1 training:test)
 - a. No resource limits for predictions
 - b. Closed-source submissions possible
- 2. Scenario source hidden
 - a. Obfuscated scenario data
- 3. Scenarios with "solution quality" as objective
- 4. Flexible algorithm and feature schedules

OASC in a Nutshell

- 11 scenarios in ASlib format
 - 8 running time scenarios (6 new)
 - 3 solution quality scenarios (2 new)
- 8 submissions from 4 teams
 - All open-source
- Performance metric: *closed gap* (PAR10)

1.0 : perfect algorithm selector (aka oracle or VBS)

0.0 : best algorithm on average (no algorithm selection)

Submitted Systems

- *zilla [Xu et al. '08]
 - Pre-solving schedule + selector
 - "Dyn. sched." with per-instance dynamic schedules (only for running time scenarios)
- ASAP [Gonard et al. '16]
 - Pre-solving schedule + Selector
 - Joint optimization of both modules
 - "V2": fixed #pre-solvers, "V3": optimized #pre-solvers
- Sunny [Amadini et al. '15]
 - Per-instance algorithm scheduling strategy
 - "autok": optimized neighborhood size; "fkvar": + greedy forward feature selection
- as-asl and as-rf [Malone et al. '17; to appear in MLJ]
 - Stacked algorithm selector (EPM + classifier on top)
 - "asl": auto-sklearn; "rf": default random forest

Bado: BNSL-2016

• Structure learning in Bayesian networks [Melone et al. MLJ; to appear]

#Instances	1179
#Algorithms	8
#Features (#groups)	86 (7)
Objective	Time
VBS	219.86
Single Best	9017.07

Camilla: CSP-Minizinc-Obj-2016

• Data from Minizinc CSP competition 2016

#Instances	100
#Algorithms	8
#Features (#groups)	95 (1)
Objective	Solution Quality
Objective VBS	Solution Quality 0.16

ASAP.v3/2 (Gap: 0.98)

Caren: CSP-Minizinc-Time-2016

• Data from Minizinc CSP competition 2016

#Instances	100
#Algorithms	8
#Features (#groups)	95 (1)
Objective	Time
Objective VBS	Time 26.27

Sunny-fkvar

Magnus: MAXSAT-PMS-2016

- Data from MaxSAT Competition 2016
- Partial MaxSAT (PMS) industrial

#Instances	601
#Algorithms	19
#Features (#groups)	37 (1)
Objective	Time
VBS	38.31
Single Best	955.61

Monty: MAXSAT-WPMS-2016

- Data from MaxSAT Competition 2016
- Weighted Partial MaxSAT (PMS) industrial

#Instances	630
#Algorithms	18
#Features (#groups)	37 (1)
Objective	Time
VBS	101.34
Single Best	1572.00

Mira: MIP-2016

• MIP solver evaluation '16 on MIPLIB2010

#Instances	218
#Algorithms	5
#Features (#groups)	143 (1)
Objective	Time
VBS	281.51
Single Best	3007.92

Oberon: OPENML-WEKA-2017

• Classifiers on data sets from OpenML

#Instances	105
#Algorithms	19
#Features (#groups)	103 (1)
Objective	Accuracy
VBS	0.875
Single Best	0.855

Sunny-fkvar

Quill: QBF-2016

- Performance data from QBF Evaluation 2016
 - Prenex CNF Track

#Instances	825
#Algorithms	24
#Features (#groups)	46 (1)
Objective	Running time
VBS	9.99
Single Best	2642.89

Svea: SAT12-ALL

- SAT instances (industrial + crafted + random)
- Training data for SATzilla 2012

#Instances	1614
#Algorithms	31
#Features (#groups)	115 (10)
Objective	Running time
VBS	97.84
Single Best	2962.29

Sora: SAT03-16_INDU

- Industrial SAT instances
- Algorithms from 2016 SAT Competition

ASAP.v2 (Gap: 0.21)

#Instances	2000	*zilla [dyn. Sched.]
#Algorithms	10	(Gap: 0.1706)
#Features (#groups)	483 (16)	
Objective	Time	
VBS	308.18	2+3
Single Best	3930.48	

Titus: TTP-2016

- Travelling thief problem
- [Wagner et al. 2016]

#Instances	9720
#Algorithms	22
#Features (#groups)	50 (1)
Objective	Solution Quality
VBS	1.00
Single Best	0.96

Comment on *zilla

- Bug in official submission
- Resubmission after deadline
 - Out of competition
- Much better results
 - In particular on running time scenarios
 - Overall ranking does not change much

Overall Winners on Running Time

Overall Winners on Solution Quality

Take Home Messages

- Schedules are famous these days
- Averaged closed gap "only": 54%
 - Still hard on some scenarios
 - many features, small training set, ...
 - Algorithm selection still not solved?
- 31.8 fold speedup on running time scenarios possible (SBS/VBS)

All detailed results and ASlib scenarios soon available at: **www.aslib.net**