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Design Space Specification

Algorithmic Building Blocks

Rules for Combining Blocks

GRAMMAR BASED DESCRIPTION

Effective algorithm

Automatic Parameter  
Configuration

Parameter Space

Instances

A configurable metaheuristic framework
• Design Space Specification 

• Divide the HSLS in components 

• Expose the design choices as parameters 

• The components 

• The rules to combine them 

• Use automatic configuration tools to select the 
best combination

Automatic Design

 1

 Permutation Flow shop Scheduling Problem

Makespan Taillard benchmark

●

●

R
el

at
ive

 P
er

ce
nt

ag
e 

D
ev

ia
tio

n

IGA ALGirtct

0.
62

0.
64

0.
66

0.
68

0.
70

0.
72

0.
74

Total Completion Time Taillard benchmark+

●

●

●

R
el

at
ive

 D
ev

ia
tio

n 
In

de
x

TSM63 TSMe63 ALGirtt

1
2

3
4

5
6

Total Tardiness Vallada benchmark

IRACE
irace will search the design space by testing automatically several parameter instantiations
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HSLS code outline
s0 := initialSolution()
s∗ := ls(s0) 
repeat
   s’ := perturbation(s∗)
   s" := ls(s′)
   s∗ := acceptanceCriterion(s", s∗)
until termination criterion (stop) is satisfied 
return s∗

Dividing the HSLS in its components
• Problem Independent Components 

• All the components that need only the objective function 
value to work 

• General structure of the HSLS algorithms 

• Problem Dependent Components 

• Neighborhoods 

• Heuristics for the generation of the initial solution 

• Perturbations

Describing how to combine the components

• We need to define rules like: 

• An ILS cannot have a tabu tenure 

• A VND has multiple neighborhoods 

• An SA has a perturbation but no LS 

• We can represent these rules as the grammar of a 
simple language

Introducing the EMILI framework 
• Easily Modifiable Iterated Local search Implementation 

• Designed to be modular and flexible 

• C++ 

• Sharing components over several problems 

• Already Supports several problems 
• Permutation Flowshop Problem  
• QAP 
• Hybrid Flowshop Problem  
• Inventory Routing Problem 
• Exam Timetabling Problem 
• Vehicle Routing


