
Automatic design of Hybrid Stochastic Local Search Algorithms

Federico Pagnozzi and Thomas Stützle

Design Space Specification

Algorithmic Building Blocks

Rules for Combining Blocks

GRAMMAR BASED DESCRIPTION

Effective algorithm

Automatic Parameter  
Configuration

Parameter Space

Instances

A configurable metaheuristic framework
• Design Space Specification

• Divide the HSLS in components

• Expose the design choices as parameters

• The components

• The rules to combine them

• Use automatic configuration tools to select the
best combination

Automatic Design

 1

 Permutation Flow shop Scheduling Problem

Makespan Taillard benchmark

●

●

R
el

at
ive

 P
er

ce
nt

ag
e

D
ev

ia
tio

n

IGA ALGirtct

0.
62

0.
64

0.
66

0.
68

0.
70

0.
72

0.
74

Total Completion Time Taillard benchmark+

●

●

●

R
el

at
ive

 D
ev

ia
tio

n
In

de
x

TSM63 TSMe63 ALGirtt

1
2

3
4

5
6

Total Tardiness Vallada benchmark

IRACE
irace will search the design space by testing automatically several parameter instantiations

parameter instantiationparameter instantiationparameter instantiation grammar2code

grammar

generates

source codesource codesource code

compiled and
executed on the
test instances

performance are
measured and used
to generate the next

parameter instantiation

HSLS code outline
s0 := initialSolution()
s∗ := ls(s0)
repeat
 s’ := perturbation(s∗)
 s" := ls(s′)
 s∗ := acceptanceCriterion(s", s∗)
until termination criterion (stop) is satisfied
return s∗

Dividing the HSLS in its components
• Problem Independent Components

• All the components that need only the objective function
value to work

• General structure of the HSLS algorithms

• Problem Dependent Components

• Neighborhoods

• Heuristics for the generation of the initial solution

• Perturbations

Describing how to combine the components

• We need to define rules like:

• An ILS cannot have a tabu tenure

• A VND has multiple neighborhoods

• An SA has a perturbation but no LS

• We can represent these rules as the grammar of a
simple language

Introducing the EMILI framework
• Easily Modifiable Iterated Local search Implementation

• Designed to be modular and flexible

• C++

• Sharing components over several problems

• Already Supports several problems
• Permutation Flowshop Problem
• QAP
• Hybrid Flowshop Problem
• Inventory Routing Problem
• Exam Timetabling Problem
• Vehicle Routing

