
My perspective on

Programming by Configuration:
An “emerging” paradigm in automated algorithm design

Steven Adriaensen

AI-lab, Vrije Universiteit Brussel, Belgium

1

Outline

1. Algorithm Design

– What is the algorithm design problem?

– How is it currently being solved?

2. Programming by Configuration (PbC)

– In a nutshell…

– Limitations, how they could be addressed, and my
own research in this direction…

2

1. Algorithm Design Problem (ADP)

There are many ways to solve a given problem.
• Multiple ways to formulate a problem
• Multiple (parametrized?) solvers exist.
• Multiple implementations of a single solution approach.

 When solving a problem we face design choices

What is the best way?
• Minimizing execution time
• Maximizing solution quality

“The problem of how to best solve problems”

3

1. Contemporary Solution Approaches

ADPs and attempts to solve them are ubiquitous and fragmented…
Algorithm Configuration, Instance-based Selection, (Dynamic) Portfolios,
Parameter Control, Reactive Search, Hyper-heuristics, Search-based Software
Engineering, Intelligent Compilers, Machine Learning, Reinforcement
Learning, Learning Classifier Systems, Program Synthesis, Genetic
Programming, Ant Programming, Logical Programming, Probabilistic
Programming, Neural Turing Machines,…

 How to best solve the ADP is an ADP itself!
(idea: apply recursively: configuring/selecting configurators, meta-learning,…)

Research objective: Towards enabling a more unified approach to automated
algorithm design, maximally exploiting the nature of the problem at hand.

4

1. Manually

5

Process is...
• tedious
• time-consuming
• costly
• untraceable

Result is...
• sub-optimal?
• overly complex?
• unreliable?

1. Automated

Idea:
What? Let a computer design its own programs
Why? Computers are faster, cheaper and unbiased
How? Provide an algorithm for the ADP…

i.e. formalizing a design process.

Fully automated: Program Synthesis, Genetic Programming, Declarative
Programming, and (more recently) Neural Turing Machines.
 Scalability issues…

6

1. Semi-automated

Programming by Optimization (PbO) (Holger Hoos, 2012)
1. Leave difficult decisions open at design time

2. Generate the best algorithm instance for a specific use-case automatically.

7

Program a Design Space  Single Algorithm

1. Who makes which design choices?

Expert Knowledge
Available to make
Design Decision?

Manual Fully Automatic Semi-automatic
(e.g. PbO)

Low

High

1. Who makes which design choices?

Expert Knowledge
Available to make
Design Decision?

Manual Fully Automatic Semi-automatic
(e.g. PbO)

Low

High

Ad hoc
design

decisions

1. Who makes which design choices?

Expert Knowledge
Available to make
Design Decision?

Manual Fully Automatic Semi-automatic
(e.g. PbO)

Low

High
Inefficient

use of expert
knowledge

Ad hoc
design

decisions

Open design choices:

1. Programming by Optimization (PbO)

11

11

How to formulate the
ADP as an optimization

problem?

How to solve the
resulting optimization

problem?

1. Per-set Algorithm Selection Problem
(set-ASP)

Given
𝐴: algorithm space
𝑋: input space
𝐷: input distribution (“use case”)
𝑝: 𝑋 × 𝐴 → ℝ: performance evaluation function

Find

𝑎∗ = argmax
𝑎𝜖𝐴

෍

𝑥𝜖𝑋

𝐷 𝑥 ∗ 𝐄[𝑝 𝑥, 𝑎]

12

1. Set-ASP reduction

13

E.g.
• configurators (ParamILS,

iRace, GGA, SMAC etc.)
• Genetic Programming (GP),
• generative hyper-heuristics
• SBSE (program optimization)

- …

1. Per-input Algorithm Selection
Problem (input-ASP, Rice, 1976)

Given

𝐴: algorithm space

𝑋: input space𝐷:

𝑝: 𝑋 × 𝐴 → ℝ: performance evaluation function

Find 𝑠∗ satisfying

𝑠∗(𝑥) = argmax
𝑎𝜖𝐴

𝐄[𝑝(𝑥, 𝑎)]

14

1. Input-ASP reduction

15

E.g.
• portfolio builders
• input specific configurators

(Hydra, ISAC etc.)
• context-aware compilers

- …

1. Dynamic-ASP reduction

16

E.g.
• (dynamic) portfolios,
• parameter control,
• (selection) hyper-heuristics
…

1. Dynamic Algorithm Selection Problem
(Adriaensen et. al, IJCAI, 2016)

Given:

• f

• f

Find:
A policy 𝜋 maximizing the expected future reward.

17

Design Space: Non-Deterministic TM

Desirability Execution: Rewards associated with
moves performed by TM

A function mapping
- input
- transitions (leading up to choice point)
to one of the possible next transitions.

1. Reinforcement Learning Perspective

18

Algorithm Selection
Problems

Reinforcement Learning (RL) Problems

Set-ASP (offline) Best-arm Identification Problem

Set-ASP (online) Multi-armed Bandit Problem

Input-ASP Contextual Bandit Problem

Dynamic ASP Markov Decision Problem

Cross-transfer:
• RL literature may help you understand and solve these problems better!
• RL community also needs to consider ASP methods in practical applications...

Formulate the ADP as a Configuration Problem

2. Programming by Configuration

19

19
E.g. ParamILS, iRace, GGA, SMAC

2. Programming by Configuration

ADP ↔ ACP

20

Open design choices Parameters

Alternative decisions Range of values

Design space Configuration space

Design Configuration

C = {0,1,2} x {0,1} x {0,1}

c = (0,1,1)

Success Story

Hard Combinatorial Optimization:
- Spear SAT-solver: 500x speedup
- SATenstein: 1.6x to 218x speedup
…

Mixed Integer Programming:
- IBM CPLEX: 2-500x speedup

Machine learning:
- Auto-Weka: Similar/better than best with default settings.

Many more: www.prog-by-opt.net

21

http://www.prog-by-opt.net/

Limitations?

22

w.r.t. formulating the ADP as a Configuration Problem

E.g. ParamILS, iRace, GGA, SMAC

Quality of the resulting design?

Question: Is it theoretically possible to always obtain the
same quality of design using PbC, which solves the ADP by set-
ASP reduction, as those design approaches which solve it
using input-ASP or dynamic-ASP reductions?

For instance: Given unlimited resources. Can we, using tuners
(e.g. ParamILS, iRace or SMAC), always design algorithms as
good as those obtained by per instance tuners (Hydra/ISAC)?
How about using parameter control?

23

Set-ASP ≡𝑻 input−ASP ≡𝑻 dynamic ASP?

No?

“Configurators return a single algorithm
to be used on all possible inputs.”

average-case performance
dependant on input-distribution

(we must re-optimize whenever the use-case changes…)

“Portfolio builders return a portfolio of non-dominated algorithms.”
best-case performance

Input-distribution independent

Dynamic approaches: even more powerful!?
(ability to adapt to stochastic events)

24

Yes!

“A (dynamic) portfolio solver is just another algorithm”
Formulate the algorithm space of the set-ASP to include it.

Consequences:
• Discrimination of (dynamic) portfolio solvers is misguided:

– Negative: Excluding them from competitions…
– Positive: Free Lunch for (dynamic) portfolios…

• Upward reductions:
– Input-ASP ≤ Set-ASP (Θ ~ family of selection mappings)
– Input-ASP ≤ Dynamic-ASP (Θ ~ family of policies)
 RL: Configurator ~ policy search approach to MDP

• The dynamic-ASP can be solved offline

25

Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)
2. Use the resulting design.

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)

26

Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)
2. Use the resulting design.

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)

27

When have we
trained enough?

Changing use
case…

Which training
inputs?

Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”) Pure exploration
2. Use the resulting design. Pure exploitation

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)

28

Exploration vs. exploitation trade-off

Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)
2. Use the resulting design.
3.
Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)

29

adaptation
≠

learning

What is 𝝅?
Learning curves!

Abuse RL…

Semi-online

In many practical settings:

• Minimize response time > total resource usage

• Availability of (cheap, free) spare resources:
– Time (overnight, in-between requests)

– Parallelism (unused cores, processors, computers)

Semi-online:

• Serve requests using the best known design

 pure exploitation

• Use spare resources to refine it  pure exploration

30

Anytime ~ semi-online

Given: Anytime ADP solver (e.g. ParamILS, SMAC):

1. Start the design process in a separate thread.

2. For each request to solve 𝑥 (asynchronous)

a) Obtain 𝑎incumbent from the design process.

b) Solve 𝑥 using 𝑎incumbent

c) Return solution to the client.

d) Add 𝑥 to the set of training inputs (+ result of run)

(possibly discounting to address non-stationarity)

31

