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Outline

1. Algorithm Design

– What is the algorithm design problem?

– How is it currently being solved?

2. Programming by Configuration (PbC)

– In a nutshell…

– Limitations, how they could be addressed, and my 
own research in this direction…
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1. Algorithm Design Problem (ADP)

There are many ways to solve a given problem.
• Multiple ways to formulate a problem
• Multiple (parametrized?) solvers exist.
• Multiple implementations of a single solution approach.

 When solving a problem we face design choices

What is the best way?
• Minimizing execution time
• Maximizing solution quality

“The problem of how to best solve problems”
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1. Contemporary Solution Approaches

ADPs and attempts to solve them are ubiquitous and fragmented…
Algorithm Configuration, Instance-based Selection, (Dynamic) Portfolios, 
Parameter Control, Reactive Search, Hyper-heuristics, Search-based Software 
Engineering, Intelligent Compilers, Machine Learning, Reinforcement 
Learning, Learning Classifier Systems, Program Synthesis, Genetic 
Programming, Ant Programming, Logical Programming, Probabilistic 
Programming, Neural Turing Machines,…

 How to best solve the ADP is an ADP itself! 
(idea: apply recursively: configuring/selecting configurators, meta-learning,…)

Research objective: Towards enabling a more unified approach to automated 
algorithm design, maximally exploiting the nature of the problem at hand.
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1. Manually
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Process is...
• tedious
• time-consuming
• costly
• untraceable

Result is...
• sub-optimal?
• overly complex?
• unreliable?



1. Automated

Idea: 
What? Let a computer design its own programs
Why? Computers are faster, cheaper and unbiased
How? Provide an algorithm for the ADP… 

i.e. formalizing a design process.

Fully automated: Program Synthesis, Genetic Programming, Declarative 
Programming, and (more recently) Neural Turing Machines.
 Scalability issues…

6



1. Semi-automated

Programming by Optimization (PbO) (Holger Hoos, 2012)
1. Leave difficult decisions open at design time     

2. Generate the best algorithm instance for a specific use-case automatically.
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Program a Design Space  Single Algorithm



1. Who makes which design choices?

Expert Knowledge 
Available to make 
Design Decision?
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(e.g. PbO)
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Open design choices:

1. Programming by Optimization (PbO)
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How to formulate the 
ADP as an optimization 

problem? 

How to solve the 
resulting optimization 

problem?



1. Per-set Algorithm Selection Problem 
(set-ASP)

Given
𝐴: algorithm space
𝑋: input space
𝐷: input distribution (“use case”)
𝑝: 𝑋 × 𝐴 → ℝ:  performance evaluation function

Find

𝑎∗ = argmax
𝑎𝜖𝐴

෍

𝑥𝜖𝑋

𝐷 𝑥 ∗ 𝐄[𝑝 𝑥, 𝑎 ]
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1. Set-ASP reduction
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E.g. 
• configurators (ParamILS, 

iRace, GGA, SMAC etc.)  
• Genetic Programming (GP),
• generative hyper-heuristics
• SBSE (program optimization)     

- …



1. Per-input Algorithm Selection 
Problem (input-ASP, Rice, 1976)

Given

𝐴: algorithm space

𝑋: input space𝐷: 

𝑝: 𝑋 × 𝐴 → ℝ:  performance evaluation function

Find 𝑠∗ satisfying

𝑠∗(𝑥) = argmax
𝑎𝜖𝐴

𝐄[𝑝(𝑥, 𝑎)]

14



1. Input-ASP reduction
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E.g. 
• portfolio builders
• input specific configurators 

(Hydra, ISAC etc.)  
• context-aware compilers     

- …



1. Dynamic-ASP reduction
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E.g. 
• (dynamic) portfolios,
• parameter control, 
• (selection) hyper-heuristics
…



1. Dynamic Algorithm Selection Problem 
(Adriaensen et. al, IJCAI, 2016)

Given:

• f

• f

Find: 
A policy 𝜋 maximizing the expected future reward.
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Design Space: Non-Deterministic TM

Desirability Execution: Rewards associated with 
moves performed by TM

A function mapping
- input
- transitions (leading up to choice point)
to one of the possible next transitions.



1. Reinforcement Learning Perspective
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Algorithm Selection 
Problems

Reinforcement Learning (RL) Problems

Set-ASP (offline) Best-arm Identification Problem

Set-ASP (online) Multi-armed Bandit Problem

Input-ASP Contextual Bandit Problem

Dynamic ASP Markov Decision Problem

Cross-transfer:
• RL literature may help you understand and solve these problems better!
• RL community also needs to consider ASP methods in practical applications...



Formulate the ADP as a Configuration Problem

2. Programming by Configuration
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E.g. ParamILS, iRace, GGA, SMAC



2. Programming by Configuration

ADP  ↔ ACP
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Open design choices Parameters

Alternative decisions Range of values

Design space Configuration space

Design Configuration

C = {0,1,2} x {0,1} x {0,1}

c = (0,1,1)



Success Story

Hard Combinatorial Optimization:
- Spear SAT-solver: 500x speedup
- SATenstein: 1.6x to 218x speedup
…

Mixed Integer Programming:
- IBM CPLEX: 2-500x speedup

Machine learning:
- Auto-Weka: Similar/better than best with default settings.

Many more: www.prog-by-opt.net
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http://www.prog-by-opt.net/


Limitations?
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w.r.t. formulating the ADP as a Configuration Problem

E.g. ParamILS, iRace, GGA, SMAC



Quality of the resulting design?

Question: Is it theoretically possible to always obtain the 
same quality of design using PbC, which solves the ADP by set-
ASP reduction, as those design approaches which solve it 
using input-ASP or dynamic-ASP reductions?

For instance: Given unlimited resources. Can we, using tuners 
(e.g. ParamILS, iRace or SMAC), always design algorithms as 
good as those obtained by per instance tuners (Hydra/ISAC)? 
How about using parameter control?
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Set-ASP ≡𝑻 input−ASP ≡𝑻 dynamic ASP?



No?

“Configurators return a single algorithm 
to be used on all possible inputs.”

average-case performance
dependant on input-distribution

(we must re-optimize whenever the use-case changes…)

“Portfolio builders return a portfolio of non-dominated algorithms.”
best-case performance

Input-distribution independent

Dynamic approaches: even more powerful!?
(ability to adapt to stochastic events)
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Yes!

“A (dynamic) portfolio solver is just another algorithm”
Formulate the algorithm space of the set-ASP to include it.

Consequences:
• Discrimination of (dynamic) portfolio solvers is misguided:

– Negative: Excluding them from competitions…
– Positive:  Free Lunch for (dynamic) portfolios…

• Upward reductions:
– Input-ASP ≤ Set-ASP (Θ ~ family of selection mappings)
– Input-ASP ≤ Dynamic-ASP (Θ ~ family of policies)
 RL: Configurator ~ policy search approach to MDP

• The dynamic-ASP can be solved offline
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Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)
2. Use the resulting design.

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)
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When have we 
trained enough?

Changing use 
case…

Which training 
inputs?



Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)     Pure exploration
2. Use the resulting design. Pure exploitation

Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)
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Exploration vs. exploitation trade-off



Online > offline design?

Offline: “first design the algorithm, afterwards use it”
1. Solve the ADP (“training phase”)     
2. Use the resulting design.
3.
Online: “refine/design the algorithm while using it”
- Given: A sequence of instances to be solved in order.
- Objective:

- Minimize the cost of doing so (resource usage/quality)
- Refine the design:

a) After solving an instance (cross-input learning)
b) While solving an instance (within-run learning)
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adaptation 
≠

learning

What is 𝝅?
Learning curves!

Abuse RL…



Semi-online

In many practical settings:

• Minimize response time > total resource usage

• Availability of (cheap, free) spare resources:
– Time (overnight, in-between requests)

– Parallelism (unused cores, processors, computers)

Semi-online: 

• Serve requests using the best known design  

 pure exploitation

• Use spare resources to refine it  pure exploration
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Anytime ~ semi-online

Given: Anytime ADP solver (e.g. ParamILS, SMAC):

1. Start the design process in a separate thread.

2. For each request to solve 𝑥 (asynchronous)

a) Obtain 𝑎incumbent from the design process.

b) Solve 𝑥 using 𝑎incumbent

c) Return solution to the client.

d) Add 𝑥 to the set of training inputs (+ result of run)

(possibly discounting to address non-stationarity)
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